System Documentation for ALife Version 16.0

By Groups G(enesis) and H

CSci 4081, Sring 2003

Prof. A. Naumaan

Section #4, E. Kryzhnyaya, 11:15 AM

Genesis Group:
Leader: Vasili Zhdankin

Joe Mortensen, Zach Schoen, Jim Smetana, Amos Zoellner

Group H:

Anton Re, Ari Olson, Stan Naspinski, Abdirizak Ahmed

5/7/2003

ALife System Overview

Author: Vasili Zhdankin

Date: 5/5/2003

Version: 1.0

ALife is an artificial life software system used to study behavior of artificial creatures. Using this system it is possible to explore particular behavior patters of individual creatures as well as the evolution of the creature type over extended life cycles. Another application could involve examining how well a creature adapts to a particular world or environment. In it’s current form, ALife creatures can be programmed using C++ to have any Artificial Intelligence desired by the user (there is a default creature built in), with the only limits being actions a creature can perform: look, move, eat and reproduce.

The current version of the system provides good flexibility for any desired users. It is possible for a user to edit a defaults configuration file to customize a particular run to their will. Some of the more useful customizable defaults include the world size, length of period for system to run, and number of creatures and sources to start out with. There are more detailed settings available as well, such as creature bite size while eating and its genetic drift ratio during reproduction. When all of the possible variations in the default file are accounted for, there are almost unlimited different ways to run the system for a particular A.I. Of course, the system has built in defaults as well for those who do not want to specify such details.

Another key feature of ALife is the ability to save and load a particular run. The system periodically saves (the saving frequency can be set in the defaults file) its state to a readable text file, and if there is any desire to rerun the system from a particular point, it can be easily done. This feature assures any user that their results can be repeated to test consistency.

The underlying system in ALife consists of a two-dimensional grid world, with each grid representing a single spot in the world. This spot can be occupied by only one Entity at any given time. The current system has two Entity types built in, sources and creatures, but more different Entity types can be added in future releases. While a two-dimensional world is not very complex, it allows for easy understanding, and a simple overhead display of the world to be printed during every stage of a run.

Compilation and Execution

Author: Ari Olson

Date: 5/5/2003

Version: 1.0

[image: image1.jpg]

Compilation:

The system can be compiled using the ‘make’ command with the given makefile. In main.cpp, the very first variable TESTS is defined. If the software is compiled with TESTS = 1, then the test case section will be executed. If TESTS = 0, the software will execute with normal execution as specified in requirements document version 2.2 and this document.

Execution with Command Line Parameters:

There are 3 command line options:

For descriptions of the variables, please read the variables section.

1) “a.out <display type> <iterations to run> <random seed>”

2) “a.out –f <load file name>”

This will load a saved state from a load file.

3) “a.out –d <defaults file name>”

This will load new defaults from a default file.

4) “a.out”

This will run the simulation using the defaults found in the .aliferc file.

How to create a load file:

Once the system has been saved, an iteration can be loaded by coping all lines between the first gridSize of the iteration, and the first gridSize of the next iteration. If it is the last iteration in the file, then copy to the end of file.

The new file can then be loaded by running: “a.out –f <load file name>”

How to create a default file:

1) The .aliferc file may simply be edited.

The new defaults can then be loaded by running: “a.out”

2) The .aliferc file can be copied to a different file, and renamed. This will preserve the original .aliferc and allows multiple defaults files to be created.

The new defaults can then be loaded by running: “a.out –d <default file name>”

If the .aliferc file becomes corrupted, a new one can be created by removing the old .aliferc, and then running “a.out”. The program will notify you that the .aliferc file is missing and will create a new one.

The differences between a load file and a default file are:

1) The default file only needs to contain the variables you want to change. For instance, a load file should always include sourceSize, but a default file can leave it out. The difference being that a load file attempts to load the same state that was saved whereas a defaults file will have a line if the user would like to specify the variable value. This is why the load file will present an error if any variable is missing, where the default file will not.

2) The default file can contain numberOfSources and numberOfCreatures lines. These lines specify how many random sources and creatures will be placed in the region. A save file cannot contain these lines, because it is attempting to load a saved state.

3) The save file must have the iterationCount line. This line specifies what iteration the state was saved at. The iterationCount line will not have any effect on a default file, the default file always starts from iteration 1.

How to specify variables in the files:

Author: Ari Olson (System/Source), Amos Zoellner (Creature)

Date: 5/5/2003

Version: 1.0

[image: image2.jpg]

System Variables:

Note that other than gridSize, these can be entered in any order in the files.

1) gridSize=(positive integer)

This line must be the first line in any save or defaults file. It defines the size of the region inhabited by the entities. If a gridSize of less than 1 is specified, the system will default to 25.

2) display=(1 or 0)

If this is 0, there will be no pause between iterations. If it is 1, there will be a 1 second pause between iterations.

3) iterationsToRun=(positive integer)

This is the number of iterations to run. The simulation may stop earlier if all creatures have died. It defaults to 100.

4) savePeriod=(positive integer)

This is how often to save. The system will save every (positive integer) iterations. If it is set to 0, the system will not save. It defaults to 5.

5) saveFile=(a filename)

This is the save file that may be specified. If it is left blank, the system will default to “alife month day time year.txt”

6) randomSeed=(integer)

This is the number to initialize rand with. It is not very important, but is used to reload a specific state. It defaults to 400.

7) iterationCount=(positive integer)

This is the current iteration to load. This line is only valid in a load file. It defaults to 0.

8) numberOfCreatures=(positive integer)

This is the number of random creatures to create. This line is only valid in a defaults file. It defaults to 1.

9) numberOfSources=(positive integer)

This is the number of random sources to create. This line is only valid in a defaults file. It defaults to 100.

10) maxFunctionCalls=(positive integer)

This is the number of function calls a creature is allowed to execute in a heartbeat, placing an upper limit on the length of a heartbeat. It defaults to 25.

11) geneticDrift=(positive decimal value)

This is a floating point number representing the percentage of variation in value between a child’s genetic trait and its parent’s genetic trait when a mutation occurs for the trait. It defaults to 0.01.

Source Variables:

1) regrowthRate=(positive integer)

This specifies the amount a source’s energy value will increase each iteration. It defaults to 20.

2) sourceSize=(positive integer)

This specifies the starting size of the sources placed in the grid. It defaults to 2000.

3) maxSourceEnergy=(positive integer)

This specifies the maximum amount of energy that a source may contain. It defaults to 5000.

Creature Variables:

Variable Name

Type

Default Value

 creatureStartEnergy

int > 0

100

The starting energy of a creature that is born.

 creatureMaxEnergy

int > 0

5000

Maximum energy a creature can have.

 creatureCurrentEnergy

int > 0

100

Current Energy a creature has (this of course should = start energy if a new simulation)

 creatureBiteSize

int > 0

20

Amount of energy creature can consume in a bite

 creatureBiteCost

int > 0

1

Energy used to take a bite.

 creatureHeartbeatBaseEnergy

float > 0

5

Energy cost for executing the heartbeat function.
 creatureEnergyUsed

int > 0

0

This is a valid input into defaults; but is not used in this version as it is used in local contexts only. Was allowed in case it is used in future versions.

 creatureBaseEnergyMultiplier

float > 0

20

A constant to be multiplied by Heartbeat base energy to give maximum energy useable in a heartbeat.

 creatureMinReproductionAgeMultiplier

float > 0

.1

A constant to be multiplied by lifespan to give minimum reproduction age.

 creatureMaxReproductionAgeMultiplier

float > 0

.8

A constant to be multiplied by lifespan to give maximum reproduction age.

 creatureMinReproductionEnergyMultiplier

float > 0

.02

A constant to be multiplied by MaxEnergy to give minimum energy required for a creature to have before it can breed.

 creatureChildEnergy

int > 0

50

The energy a child will start with when born – same as the energy the adult will lose after a successful breed.

 creatureMovementCost

int > 0

2

 creatureMovementExp

float > 0

.3

The energy cost for moving a creature a certain distance is given by: creatureMovementCost * distance ^ creatureMovementExp.

 creatureLookingCost

int > 0

1

 creatureLookingExp

float > 0

.1

The energy cost for looking a certain distance is given by creatureLookingCost * distance ^ creatureLookingExp.

 creatureLifespan

int > 0

100

The number of iterations until a creature’s absolute death.

 creatureIterations

int > 0

 0

This variable is unused in this release; but is allowed to make development easier for future releases which track the individual iterations of a creature.

 creatureId =

int > 0

unique

A unique ID is assigned by default to each creature, to make it easier to track their progress. This can be overwritten with an integer value as a specified default.

 creatureCurrentFunctionCalls

int > 0

0

The number of times the creature has called a function this iteration. As this is a local variable, specifying it in defaults is useless.. however, it is included to simplify future releases.

The following probabilities are the probabilities that the given attribute will be subject to a genetic mutation over a successive generation. These all must be decimals between 0 and 1. If not specified, all default to the value .2 . Notice that attributes not included in this list are not mutatable over generations, and thus invalid in a defaults file.

 creatureProbStartEnergy

float 0 <= x <= 1
.2

 creatureProbMaxEnergy

float 0 <= x <= 1
.2 creatureProbBiteSize

float 0 <= x <= 1
.2

 creatureProbBiteCost

float 0 <= x <= 1
.2

 creatureProbHeartbeatBaseEnergy

float 0 <= x <= 1
.2

 creatureProbBaseEnergyMultiplier

float 0 <= x <= 1
.2

 creatureProbMinReproductionAgeMultiplier
float 0 <= x <= 1
.2

 creatureProbMaxReproductionAgeMultiplier
float 0 <= x <= 1
.2

 creatureProbMinReproductionEnergyMultiplier
float 0 <= x <= 1
.2

 creatureProbChildEnergy

float 0 <= x <= 1
.2

 creatureProbMovementCost

float 0 <= x <= 1
.2

 creatureProbMovementExp

float 0 <= x <= 1
.2

 creatureProbLookingCost

float 0 <= x <= 1
.2

 creatureProbLookingExp

float 0 <= x <= 1
.2

 creatureProbLifespan

float 0 <= x <= 1
.2

Individual Creatures and Sources

It is valid to specify completely unique creatures and sources in a defaults or save file. The syntax for including a source is:

source=<attributes in the order recovered from a saved simulation>

(example):

source=x=5 y=15 energy=2200 energyMax=5000 iterations=5 regrowth_rate=40

The syntax for including a creature is:

creature=<attributes in the order recovered from a saved simulation>

(example):

creature=x=10 y=12 startEnergy=11 maxEnergy=270 currentEnergy=234 biteSize=4 biteCost=1 heartbeatBaseEnergy=3 energyUsed=9 baseEnergyMultiplier=55 minReproductionAgeMultiplier=0.11 maxReproductionAgeMultiplier=0.77 minReproductionEnergyMultiplier=0.045 childEnergy=13 movementCost=3 movementExp=0.45 lookingCost=2 lookingExp=0.55 lifespan=67 age=5 iterations=5 id=4 currentFunctionCalls=3 probStartEnergy=4.01702e-40 probMaxEnergy=0 probBiteSize=5.60519e-44 probBiteCost=3.62622e-40 probHeartbeatBaseEnergy=5.60519e-44 probBaseEnergyMultiplier=0 probMinReproductionAgeMultiplier=3.80167e-40 probMaxReproductionAgeMultiplier=0 probMinReproductionEnergyMultiplier=-NaN probChildEnergy=9.80909e-45 probMovementCost=0 probMovementExp=2.8026e-42 probLookingCost=3.97464e-40 probLookingExp=0 probLifespan=3.59943e-40

Since this list of variables is printed out in the save file of a run, it can easily be obtained and modified.

Output:

Author: Amos Zoellner

Date: 5/5/2003

Version: 1.0

	Iteration: 100 Creatures: 240 Sources: 58

CCCCCCCCCCCC+++++++ss++++

CC+CCCCCCCCCC++++++++++++

++++CCCCCCCCCC++ssss+++s+

C+++CCCC+CCCC+s++++++++++

+C+CCCCCCCCCC++++++s+++++

++++++CCCCC+++s++++s+++++

+C+++CCC+C++++++++ss+++++

+C+C+CCCCC+++++++++++++s+

CCCCC+CCC+CC+++++++++++++

CCCC+CCCCCC++++++++++s++s
CCCCCCCCCC+C++s++++s++ss+

CCCCCCCCC++++s+++s+s++++s
CCCCCCCCCC++++s+++++++s++

CC+CCCCCCC+C+C+s+++++++++

C+CCCCCCCCCC+++++s++s+ss+

CCCCCCCCCCCC+C+++++++++++

CCCCCCCCCCCCCCs++++s+++++

CCCCCCCCCCsCCC+s++++++++s

CCCCCCCCCCsCsC++s++++++ss
CCCCCCCCCCC++++++++++++++

CCCCCCCCCCs+s++s+++++++s+

CCCCCCCC+++s++++++++++s++

CCCCCC+++++s++++++s+s++s+

CCCCCCs+++s+++++s+s+++++s
CCCC+++++s+++++++++++++s+

Processed : 100 total heartbeats in 100 World heartbeats

Once execution begins, the program displays output in the form of a grid containing the following symbols:

+ (an empty location

C (a creature

s (a source (plant)

Each iteration of the simulation represents one unit of a creature’s lifespan, and one call to a creature or source’s ‘heartbeat’. During a heartbeat, an entity (source or creature) interacts with the environment and changes according to its default values or attributes. After each iteration, the resulting map of entities and empty locations is displayed.

A debug file is produced, called debug.txt. If any errors were encountered during execution, they can be found printed in this file.

A unique save file corresponding to the run is saved as specified previously.

…. this document compiled/edited by Amos Zoellner 5/7/2003 v 1.0

