Star Field Recognition

Amos Zoellner

5/1/2004

Department of Computer Science

University of Minnesota, Twin Cities

zoel0009@umn.edu

Abstract

The purpose of star field recognition is to take a photograph of stars and match each star to a star in a database of known stars. Given a photo of the sky, it should be possible to determine which stars are in the photo. There are many examples which demonstrate applications of this research. In particular, both satellite navigation and telescope orientation are processes that must be guided by a knowledge of the sky. In both cases, the satellite or telescope must determine the direction that they are pointing in order to get meaningful results. A star field recognition system can use preprocessed information about star locations in space to identify an uncataloged field.

The author, Amos Zoellner, and his partner, Jachin Rupe, have worked on a method to solve this problem through over a year of research. In this paper, we provide an algorithm that can be used to provide the link from the photo to the database, and demonstrate that it can run in a reasonable amount of time and produce correct results for test data. We also have begun the work on creating the real data to handle all known stars, and with it, the ability to identify any photo. Finally, other techniques that have been used to solve this problem are discussed.

Jachin has primarily worked with software that parses a photo of stars and turns it into meaningful data. Amos has primarily worked on an algorithm to handle the data. Together, they have worked on software which mimics a camera on a large database of actual star coordinates in order to generate data which can be used for the purpose of real star field recognition.

1
Outline

2.0
Introduction

3

3.0
Johann

6

3.1
Creating a Hash Value

8

3.1.1
Parsing a Photo of Stars

8

3.1.2
Computing a Hash Value

8

3.1.3
Output Hash Method

9

3.2
Choosing the Best Match

11

3.3
Experimental Results

12

3.4
Runtime

16

3.5
Conclusions

16

4.0
Bayer

18

4.1
Experimental Results

18

5.0
Future Work

20

6.0
Related Work

21

7.0
Acknowledgements and References

24

8.0
Bibliography

24

Appendix A – Source Code

26

Appendix B – Data Loss due to Pixelization of a Photo
56

2.0 Introduction
Our problem is to map an image of an unknown star field to a previously mapped star field such that it can be identified. This task is referred to as “star field recognition.” A primary application of star field recognition is to aid satellite navigation. In space, satellites currently navigate via the aid of signals from earth. If an accident, such as a piece of debris hitting the satellite or a rocket misfiring, occurs, the satellite loses its connection with the earth’s signal. Traditionally, satellites in operation respond to such accidents by scanning the sky and searching for the signal from earth. However, if the satellite had a way to analyze the sky and immediately determine its direction, it would be able to instantly reorient itself, and ultimately, travel without the help of earthbound infrastructure.

Another application is in telescope orientation. Traditionally, astronomers using a telescope that utilizes software to aid in orientation must initialize the telescope by pointing it at a particular location. Amateur astronomers can be aided by star identification techniques that can immediately determine what it was looking at as soon as it was pointed at the sky.

Star field recognition begins with a photo of the night sky. This photo is presumably taken from a satellite, a telescope, or a digital camera. All three of these instruments will return different sets of stars depending on the quality of camera, as well as whether the camera is in space or on earth. For the purposes of this research, we will assume that the photo is generated from a satellite, and any satellite’s camera will have roughly the same level of detail and include fairly overlapping sets of stars. Figure 1 depicts such an image.

[image: image1.jpg]

Figure 1 – a star field: andromeda region

An image of a star field consists of black space and grayscale pixels representing stars.

The photo in Figure 1 is of the Andromeda galaxy. A knowledgeable astronomer would likely be able to glance at this photo and correctly make that observation. This information often comes from recognizing such things as familiar angles, groups of stars, or even pictures, such as of a big dipper or a hunter. For a computer, however, the task is compounded by the fact that the computer must correctly identify any region of the sky equally accurately. In addition, the computer must handle processing of a photo in which stars may appear blurred together, scaled larger or smaller, or rotated unusually, as well as deal with the existence of unexpected planets or comets. Even the task of picking an individual star from an area spanning several pixels is a challenge due to the limitations in the field of computer vision. For example, two stars that are touching or overlapping are effectively indistinguishable, even if a human eye may be able to tell that the stars are actually separate stars.

Many solutions to this problem have been proposed and studied. Currently, devices commonly called Star Trackers are used more and more frequently to perform this task to aid in satellite navigation (Samaan, 2). At their core is the basic star field recognition problem. Common solutions to the problem focus on observations of angles between stars and similar triangles, as well as utilizing pattern recognition methods such as neural networks and stochastic processes complexity (Udomkesmalee, 1283). For our algorithm, we use a method of characterizing angular separation between stars. In its traditional form, this approach results in a huge computational complexity (Junkins, 261), and is subject to errors due to a sensitivity to distortions in a photo. However, we attempt to overcome this by restricting the pattern to a small number of stars, using a star-tree structure to ensure general similarity between patterns, gracefully handling missing “phantom” stars in a photo, and allowing for distortion between stars of up to 1.5 degrees.

Our solution is the following: Given a photo of some stars, compute a ‘hash’ value that will always be similar to the hash value computed from any photo in which both photos contain the same star as their brightest star. This hash is to be similar irrespective of zoom levels, orientation, or slight variance in the stars identified due to either flaws in a camera or limitations in computer vision.

In preprocessing, we will compute enough hash values such that any new hash value generated will be quite similar to a previously computed hash value, indicating that both came from similar regions of the sky. In particular, the hash will be linked to one particular star, the brightest star that occurs in both photos, which can be identified and labeled from the database of known stars. The set of stars that the photo might contain is drastically reduced to only those around that known star. The problem of identifying which stars are which becomes computationally feasible, using methods such as Bayesian techniques, a least squares regression, or all-pairs matching (Udomkesmalee, 1283).

We will begin by describing the algorithm for converting a photo into a hash value and matching it against a database of known hash values. This software that implements this algorithm is referred to as ‘Johann’. Secondly, we will describe the process by which we generate a database of known hash values which collectively span the entire sky. This software is referred to as ‘Bayer’. The names are based on that of Johann Bayer, an astronomer who around 1600 did extensive work in cataloging and identifying stars. He was the first astronomer to use Greek letters to identify stars, a now common practice (Britannica).

3.0 Johann
There are a few key facts about a photo of stars that we will consider in order for a computer to begin the process of identifying it. First, a photo contains a lot of stars. A small section of the sky can easily contain a couple hundred stars; there are around 10,000 that are sizable enough to be seen by a camera. However, the nearest star is over four light years away. Thus, to an observer within or near our solar system, the stars will always appear to have fixed positions relative to each other.

[image: image2.png]Scaled and Retated

Figure 2 – the angles between stars do not change despite scaling and rotation

 In addition, their relative brightnesses will be fairly consistent. This means that in two photos of the same area of sky, the brightest star will appear in both. In addition, if we know the location of the fairly bright stars that surround the brightest star, we can expect most or all of them to appear in both photos. The angles between these stars will remain constant, as illustrated in Figure 2.

Our algorithm will designate the brightest star in the central third of the photo as the ‘brightest star’. It will then slice up the photo into 120 pie shaped wedges surrounding the brightest star. It will then consider the 25 nearest stars that have a brightness value above some threshold. For these 25 stars, it will create a bitstring of 120 bits. A 1 at position i means that the star lies in the ith wedge.

[image: image3.png]

Figure 3 – how a hash value is generated from a photo of stars: the 1’s and 0’s surrounding the central star represent the hash value bitmask: 010000101010

Some stars are not considered because they are too small. Others are too far from the central star. For each slice, a ‘1’ indicates that at least one sufficiently close and large star was found within that region of the photo. A ‘0’ indicates otherwise

Since the same bright stars will generally always show up in a photo, hash values produced by different photos should have great similarity. Even if some mismatches occur (stars do not appear in a photo as expected, or stars appear that aren’t expected), the sheer number of regions (120) will still make the matches that do occur statistically significant.

Finally, notice that if the way that the pie slices are cut is shifted, the bitmask can vary - a star that occurred in position i may either appear in position i, or else at position i + k. However all stars will be shifted by k positions, leaving the bitmask rotated, but otherwise identical. Our software will consider all 120 possible cyclic values of the hash to account for this rotation.

In addition, any star may appear either at position i, or at position i+1, because some stars may have been very close to a boundary line. If the boundary line shifts slightly, some but not all stars may appear in a neighboring region. To accommodate this, we will “buffer” the hash by saying that if a star occurs at position i, we expect it to occur at either position i or position i+1 in a future hash string. This is described later.

The software that we have developed to implement this is called ‘Johann.’ It takes as input a photo and outputs which known hash value it best matches with. Its task is to solve the problem summarized below:

Given photo P, compute hash value H. Now, if photo P is shifted, rotated, or has a fair number of stars missing or added, creating photo P’, we would like to compute hash value H’. In order to match P’ to the region created by P, we will use a function match, that takes as input a hash function and returns the closest matching hash function from a database. If we insert H, and a huge number of arbitrary hash values into the database, then when we input H’, we expect H to be returned, rather than one of the arbitrary hashes. In particular, all photos that contain the same star as their brightest star will return nearly identical hash strings, and we will thus know which star that brightest star actually is. From there, we will know exactly what part of the sky the unknown image is from, assuming that we have saved and labeled a previous hash of the region using known data.

This functionality will require several components which shall be described:

3.1. Create a hash value for arbitrary photo P.

3.1.1. Parse the image of the photo and store the data on the locations of the stars

3.1.2. Compute a hash value based on the locations of the stars

3.2. Choose a “best matching” hash value from a database and compute a similarity score.

3.1. Software to create a hash value for arbitrary photo P.

3.1.1. Parse the image of the photo and store the data reflecting the locations of stars

A photo of an unknown star field will be parsed using a program developed by Jachin Rupe and modified by Amos Zoellner for this project. This program is included in the file ‘Johann.cpp’ in Appendix A. This program takes as input the following parameters:

threshold
optional
a parameter which excludes pixels from being counted as stars if their brightness (0 (black) –255(white) is below this value.

imageFile
required
the location of the .gif or .jpg image to parse

showTests
optional
non-zero to display intermediate results for debugging

outputFile
optional
file to write the data generated by the photo to

By the end of execution, this software creates an object of type map<int, Star>, called ‘stars’, which stores a vector of star objects. Each star object contains the following attributes and methods:

getMagnitude(): total brightness of all of the pixels making up this star

center(): the x and y coordinates of the center of this star

points: a vector containing all of the points that make up the star and their corresponding brightnesses

3.1.2. Compute a hash value based on the locations of the stars

In order to compute a hash value for the ‘stars’ object, the object StarHash, found in Appendix A, is used. This program contains one public method: OutputHash().

This method computes the hash value for the map<int, Star> object passed in the constructor, and returns the corresponding hash value.

3.1.3
Details of the implementation of the OutputHash() method:

Stored in the object are:

set of stars of size z = S1… Sz

star: x coordinate, y coordinate, b brightness

Values for grid size constraining values of x and y

1: O(z)

Determine the brightest star c (or Sc) s.t. cx > 1/3X and cx < 2/3X and cy > 1/3 Y and cy < 1/3Y. These buffers ensure that the brightest star is not too close to the edge of the image, and we can calculate relative angles between many of the stars surrounding it in the photo.

We assume that coordinate to be the new origin, by subtracting cx from all values of x’s in future calculations and subtracting cy from all values of y’s in future calculations.

Set Base = [0, 1] to be a vector pointing from point upwards. This is a reference point from which all angles between it and other stars can be computed.

2:

Set r, where r is a measure of accuracy, equal to the number of regions to divide the area into. The photo will be divided into r regions such that each region represents a pie shaped wedge, all of which are centered on the center star. We will compute angles from the center star to each star in the photo to determine which region each star falls into. Figure 4 shows an example, and the angles that would be calculated from it as lines. In this example, there are 4 regions. 3 of them have stars, resulting in the following bitmask: 1101. This bitmask becomes our “hash value.”

[image: image4.jpg]region s /NOASE
region 1
310

region 3 region 2

Figure 4 – slicing up the pie

We would like, on average, to have much less than one star per region. Initialize R[] of size r to 0’s.

In the program, we allow any R to be set, but it is constrained by the upper bound (which we will likely choose) of R = four bitmasks, each of size 30, giving a total bitwise representation of 120 regions, or 1 for every 3 degrees in a circle.

3. O(z)

For every star s, do 4.

4. {O(1)}

Star S has vector V = [Sx - cx, Sy – cy].

In order to ensure that the same center star will always return the same results, regardless of how many stars there are in the photo, we would like to only include the k-nearest stars to the center star in the algorithm. For this project, when creating hash strings, we choose k = 30. This way, on average, < ¼ bits of the 120 region bitmask will be 1’s.

Rather than running a full nearest neighbors algorithm, we can use the known star density of the photo to exclude stars that fall too far away from the center.

It is known that there are n stars in the photo, which has area widthofPhoto * heightOfPhoto = A. Thus, the density of the photo d = n/A. So, to only include k stars on average, we want to only include stars if they fall in a region of size k/d. We choose a circular region centered at the center star, which has area pi * r2. Thus, k/d = pi * r2, or r = sqrt(k * widthOfPhoto * heightOfPhoto / (pi * n)). Thus, we can exclude stars from our hash if |V| is greater than sqrt(30 * widthOfPhoto * heightOfPhoto / (pi * n)).

By only including k stars, many regions will exist with no stars, keeping the bitmasks that represent the hash value statistically unique.

There will also be a need to avoid stars too close to Sc (the center star), as the pixelization of the photo will result in a poor estimate of the angle between the Base and the star.

For example, Figure 5 is an example of a star captured using a camera of high quality:

[image: image5.png]

Figure 5 – a star does not have a precisely defined center

It is unlikely that the estimate that the image parser makes of the actual pixel location of the star is off by more than 1 unit (Appendix B). Nonetheless, it can easily be off by 1. This error can be assessed by estimating approximately how far from Sc a star needs to be before the angle’s error can be bounded by a few degrees of variation from the actual value.

We have done some calculations (Appendix B) that show that the angle computed between Base and a star is easily bounded by 1.5 degrees for any star at least 40 pixels away from the center star. Thus, this error can likely be ignored as it can be compensated by the inexact matching ability of the similarity function, and few stars show up in the sample data that close to one another. In fact, simply enlarging the photo immediately resolves most of the problem, as we can more accurately assign the center of a star to specific integers x and y.

Compute the angle between Base and V using formula for the angle between two vectors:

Normalize V (Vu = V/|V|), w/ |V| = sqrt(sum(v)).

Now, V * Base = cos(angle), so solve for angle = cos-1(V .* Base).

By choosing Base = [0 1] we simplify this calculation.

Calculate which of the r pie slices star falls in:

size = 360/r = degrees that region spans

location = trunc(angle/size) = what indexed region our star falls in.

Example: 10 regions would have size = 36 degrees. If we have angle = 190, location = 5, then. 5 * 36 = 180, so the angle falls into the 5th 36 degree wide section.

Set R[location] = 1. (star exists there.) Because we only set it to 0 or 1, we would want enough regions s.t. it is unlikely that 2 stars fall in the same region. A variation on this algorithm would use fewer regions and assign integers as the number of stars found in the region. It is not necessarily bad not to know how many stars are in the region, but it is a loss of potentially useful data.

It will be important to measure the impact that variation due to a pixelized photo will have on the coordinate data. For example, stars very close to the origin will have very poor precision when calculating an angle between [1 0] and the star, due to the fact that there are much less than 360 possible locations for the star to “be”. Fortunately, the calculations in Appendix B show this to likely be not a substantial error for most distances from Sc.

At the end of the day, R is a bit string of length 180 (in this example), with approximately 30 locations of ‘1’s. Finally, we pad R so that for every 1, we set the bit to its right to a 1 also. This way, if a later photo is rotated slightly, such that a number of regions end up shifting over to the next bit, a ‘1’ will still be found in the hash at the shifted location. It will also help account for data quality errors in which a star is estimated to be located at a slightly wrong position.

z = # stars in photo – estimate: 100

H = # stars we need hash values for: about 1000

Total Time: O(2z). Since this is a one time only operation, the runtime is not very significant. We will need to generate H hashes, we will only need to run O(1000 * 2 * z) computations, and then be finished with this portion.

3.2. Software to choose a “best matching” hash value from a database and compute a similarity score.
For a new photo, compute PHOTO, a bitstring of size r (120) representing the locations of stars that were found.

We have a set of size |h| of bit strings of length r that contain previously computed hash values for all major stars. We guess: |h| = one-tenth of all stars = 1000 = H. One of these strings is presumably HASH, a result that came from an earlier parsing of a photo from the same location in the sky. In reality, rather than taking photos of all locations of the sky, we will compute the values of ACTUAL from a known database of stars. This part of our research is accomplished by the Bayer software described later.

new PHOTO’s stars:

00000010010001000001100000100

ACTUAL stars found in sky:

00000100001001000011000001000

HASH resulting from ACTUAL:
00000110001101100011100001100

MATCH:

00000010000001000001100000100

Note that all items but one in the photo show up in the match, even though half of them did not line up exactly. There is also room in the code to assign different scores to mismatches in which there is a 1 in the photo and not in the actual data (this is bad - a star randomly appeared in the photo that doesn’t even exist in our hash) and in which there is a 0 in the photo and a 1 in the actual data (this is not so bad – the star might not be bright enough to have shown up). At worst, we can compute a few closest matches, and run a much stricter algorithm on the reduced data set. At best, we will be able to choose the closest match with sufficiently low error.
To choose the best matching hash:

1-3. {O(2 *z) }

Compute hash string V, representing the HASH that results from the photo, but do not buffer it. When computing V, we choose k = 22, such that on average, only 22 stars show up in our hash photo. This way, we are unlikely to include stars that were not included in the actual HASH, which included the 30 closest stars.

4. {O(H2)}

For each hash string h found in the database,

5. {O(1)} (these are very fast operations as they are bitwise, even though they are technically O(r)- so we count them as O(1).)

Let matches = h & V and mismatches (star in photo not in database, but not the other way around (poor camera, photo truncated…) = ~h & V.

This results in a bitstring with a 1 wherever a match occurred and a bitstring with a 1 wherever a bad mismatch occurred.

The sum of bits of these two strings results in a score function which we will attempt to modify so as to minimize the error rates of this algorithm.

Since there are few 1 bits, we count the number of bitwise matches in time proportional to the number of 1 bits (generally only a few) using an algorithm found at: http://www.caam.rice.edu/~dougm/twiddle/BitCount.html

Every time we find a higher result for count, save it as well as h (which hash returned it).

6. O(H)
Circular shift V and repeat 4 for each of the r shifts possible.

7.
The hash result that was returned is the best match that we found. In order to ensure that a unique match is found, we will want approximately the same stars to be included every time we hash from the same center star. This was done as described before using estimation from the density and size of photo.

If the number of matches found is higher than Threshold (a predetermined estimate of how many matching angles we should find for a match from the photo to a hash), we assume that we found the center star that created the hash algorithm in the first place. Else, we need to take a new picture. If multiple ‘best matches’ occur, we can run further algorithms to choose the correct match.

Total Time:

O(2z + H2)

z = # stars in photo – estimate: 100

H = # stars we have hash values for: about 1000

= O(1 million) computations.

3.3 Experimental Results:

To test how this works, we generated 15 photos of the sky from the following site:

http://stdatu.stsci.edu/cgi-bin/dss_form

At this website, the user is able to enter coordinates in the form (ascension, declination) as well as the desired height and width of the generated photo. A photo is dynamically created with what stars that part of the sky has and their appropriate brightnesses. The user can choose from several databases as well, each containing differing sets of stars. By including photos generated from different databases, we can roughly simulate what would occur if a different camera was used on the same section of sky.

These input values were used to generate the photos:

Name
DataBase
R Ascension
Declination
Height
Width
Rotation

star1
DSS1

5

15

15
15
0

star2
DSS1

5.01

15.06

15
15
0

star3
DSS1

5.01

15.08

15
15
0

star4
DSS1

5.01

15.08

14
14
0

star5
DSS1

5.005

15.06

17
17
0

star6
DSS1

5.005

15.06

20
20
0

star7
DSS1

5

15.1

20
20
0

star8
UKSTU
5

15.1

15
15
0

star9
QuickV
5.05

15.06

16
16
0

star10
QuickV
5.03

15.06

14
14
0

star11
QuickV
5.03

15.06

15
15
0

star12
DSS1

20

20

15
15
0

star13
DSS1

25

25

30
30
0

star14
DSS1

5

15.1

20
20
10

star15
DSS1

5.005

15.06

17
17
170

The hash of star1 and star2 are used as ACTUAL values, representing hashes stored in the database for the regions of sky in which the brightest star in star1 and star2 are the centers. Here are the buffered hashes that were computed:

hash of star1:H1={15721216|752774671|1057751486|1036197683}
hash of star2:H2={208461848|427942371|993066752|805307142}

(a hash value is represented as an array of 4 integers, each representing a bitmask for a portion of the entire hash bitmask (which would be too large to store in a single integer value)

All of these huge binary numbers have approximately 30 ‘1’ bits in them.

star1 is a region very near to star2, but contains a different brightest star.

star3 through star11 correspond to different views of the same region of sky as star2, either shifted or zoomed in/out. Some are different databases.

star12 and star13 are completely different locations of the sky.

star14 and star15 correspond to rotations of star7 and star5 accordingly.

Thus, we expect that if we compute hash values for star1 through star15, we expect all except star1, star12, and star13 to be sufficiently similar to star2’s buffered hash that they could be picked out from a huge database of hash values.

We generated a set of 506 random hash strings, in which the approximate number of stars in each hash was between 27 and 33. (The buffered hashes contained approximately 30 stars). Each hash was then buffered in the same manner as the computeHash program. This dataset was created by a program I wrote, StarGenerator. H1 and H2 were inserted at positions 0 and 5 of the dataset, respectively.

After executing the HashMatch algorithm on all of the stars, here is a sample output:

starMatch(star1, database):

Hash of this input:

11000001110000100000000(6349056),100100000001100010000000000100(604381188),10000000(128),100110000010000000100000000(79757568), (sum=18)
 Best Hash: 0

 Match Score: 18

This means that out of the 18 bits found in star1’s hash, 18 of them matched perfectly with the buffered hash value found at index 0, and none were not found, resulting in a score of 18. Since the hash value found at index 0 was created by star1 (this star), this makes sense.

Since 18 matches were found / possible 18 stars to match, we compute matchWeight as 18/18 = 1. The matchWeight will be generally be between 0 and 1, and will be larger depending on how good the match is.

Here are the summarized results for the remaining stars:

StarName
#bits found in star’s hash
index of best match
score
matchWeight

star2:

19

5

19
1

star3

20

5

20
1

star4

20

5

20
1

star5

19

5

19
1

star6

19

5

19
1

star7

19

5

19
1

star8

23

5

15
.65

star9

18

5

18
1

star10

20

5

16
.8

star11

21

5

17
.81

star12

23

0

13
.56

star13

18

26

12
.67
star14

23

5

21
.91

star15

22

5

18
.82

Total run time: 20 seconds (.75 sec/star)

Keep in mind that we expected all except star12 and star13 (bold) to be matched to hash index 5. Those remaining two, we expected a random match and low matchWeight score, which was the case.

For star12 and star13, the algorithm found hash[0] be no better than any other value and chose it as the best match. For the remaining stars, it chose hash[5] (the correct answer) as the best match. All of these except star8 were matched with better than a .80 matchWeight ratio, suggesting very certain matches, whereas the incorrect matches had around .55 matchWeight, which is not very good. (Nearly ½ as many mismatches were found as matches).

To examine the anomaly with star8’s low score, we went back and looked at the photos for star2 and star8. It was immediately apparent that the database UKSTU (star8) contains more stars than that of DSS1 (star2). Thus, there were likely several stars that were hashed in star8, but were not found in the buffered hash computed for star2, and thus received negative scores. In a real scenario, we are hoping to generate the hash functions based on an all-inclusive database – that way, there would be no photo in which stars could appear that weren’t included in the hash. Nonetheless, even though the score for star8 is low, it is a credit to the algorithm that it still uniquely identified hash[5] as the best match out of the 506 test hash strings that I initialized the dataset with.

We repeated this entire process with a few different parameters. One thing of note was that if the random hash data set was generated using 25-35 stars per hash (up to 70 in the buffered hash), stars 12 and 13 had the following results: (all other results were identical.)

star12

23

43

17
.74

star13

18

408

16
.89

Apparently, with more ‘1’ bits in the database hash data, they were randomly able to find significantly better hash strings to match against. However, all of the strings that were supposed to match against star2 still matched against it. (even star8) Therefore, we can conclude that the hash function is still generating sufficiently unique records even given greater variability on the types of hash strings produced, and thus even if we get records with an unusually variable number of stars in them. To get exact results, we could limit the # of 1 bits in the hash string to k via an exact method, rather than using density approximation.

Next, we experimented with different values of the threshold parameter. We found that as long as threshold was > 100 and < 240, all of the stars that were supposed to map to star2 (hash[5]) still did so. This suggests that the method will hold well even when one camera is taking in the brightness of stars differently than another, as long as the difference is not too extreme.

3.4 Runtime:

As indicated, the process of computing a hash and matching it against a database of size 500 took about ¾ second per star (O(2z + H2)). Although this is reasonable, there is room for improvement of this runtime:

1) The loops to compute brightest star for the photo and center star for each star can be removed by deriving those computations at the same time that the photo is parsed to get values for each pixel’s magnitude.

2) Better substring matching functions exist that should work in a better than O(H2) runtime.

3) There are several exp(2, x) operations deep inside of nested loops that can be improved using shift operators.

4) There are many locations in the code where loop unrolling might be implemented successfully.

Addendum: Since this experiment was run in December of 2003, loop unrolling and simplification of math functions was implemented throughout the Johann software. As of April 2004, the software can now parse a star in an average time of just under half a second. The code included in Appendix A is the new code in which the only changes that were made were those affecting speed of the algorithm, rather than functionality.

3.5 Conclusions
We have shown that the hash algorithm works to uniquely identify a set of about 15 patterns from a database in which there are 500 such patterns, uniquely identifying one particular star from amongst a database of 500 (though randomly generated). Thus, this algorithm should suffice for our larger task of star field recognition under the following conditions:

1) Because the sky is so large, the regions we divide the sky into will need to be much larger than the size of regions tested in this experiment. In order to get around 750 regions, for example, we will need to divide the sky into approximately sqrt(750) by sqrt(750) tiles (27 * 27). This means that each region will have to be about 360/27 = 13 degrees by 13 degrees. This means that there will be significantly more stars in each region. However, each region should still have one unique brightest star, from which we can calculate the 30 nearest stars, and the algorithm should work as expected. If the photo is large, there may need to be some modifications of the 2-D data, due to the effect of taking a photo of a curved space over such a large region, but this would be a simple mathematical transformation. This is dealt with in our Bayer software using a perspective projection transformation on the data.

2) The hash values that result end up being unique. Since the sky appears to be pretty much random, this should be the case. Future tests will show whether this is the case. One factor to worry about is that of star clusters and galaxies, in which stars will appear more close together than expected in random test data. In addition, the presence of planets or comets will likely call for the algorithm to be repeated a few times with the second or even third brightest star if it fails on the first try.

As the database size grows, and is populated with actual patterns rather than test data, the potential for false matches will grow. Our test database had 500 patterns, but an actual application may have up to a thousand such patterns It would not need any more than that, because with a size of 1,000, one in ten stars are valid center stars. The odds of choosing a region of the sky that does not contain one of these 1,000 stars is very low, since we are asserting that a processed photo will be of such a size that it contains at least a couple hundred stars.

By limited the database size to as small as possible, and increasing the bitmask size to as large as necessary, this problem of unique matches can be constrained. However, the algorithm may then fail in other respects, such as losses in performance, and a loss in its ability to handle perturbations in the a photo.

4.0 Bayer

Now that we have found that Johann correctly identified a photo of stars from a database of random hash values and one correct hash value, the task remains to generate a database containing all possible hash values, and see whether any photo is correctly identified. To accomplish this, we are creating the software known as ‘Bayer’. Bayer’s task is the following: Given a database of 9,000 stars, compute buffered hash values for any star bright enough to be considered later as a ‘center star’, and save the hash values to a database for Johann. Johann will be modified to dynamically load an appropriate database of hashes rather than using the test data previously generated.

Our database of around stars is stored in an XML file that we created using data from The Bright Star Catalogue. The Bright Star Catalogue is a database containing the 9,110 stars with a magnitude greater than 6.5. The data is accessible on the web at http://www.alcyone.de/SIT/bsc/bsc.html.

In order for the Bayer software to read the data in the XML file that we created, we used the Xerces XML library. Bayer contains an XML parser that iterates over the stars in the file and reads them into memory so that we can do our data transformations on them.

Xerces is a free C++ solution described at:

http://xml.apache.org/xerces-c/index.html.

License information for Xerces is located at:

 http://xml.apache.org/LICENSE

 The stars in the xml file are stored in x-y-z coordinates, each point one unit away from (0,0,0), or earth. Since a photo is two dimensional, Bayer must do a perspective projection to convert the points from Cartesian points into two dimensional points as they would appear if viewed from a camera. Our software does this with the aid of the classes in the ‘World to Screen’ project available for personal use at:

http://astronomy.swin.edu.au/~pbourke/projection/transform/

Permission was given by Mr. Bourke via email to use his files in our research.

For our purposes, we converted the project from c to c++, making slight modifications. The altered source code is included in Appendix A.

Once we have done the transformation for a given angle, we are left with a set of stars that appear when a camera is pointed at the sky at the desired angle. Bayer passes this set to the StarHash’s CreateBufferedHash method, and saves the buffered hash to the database of known hashes.

Although we are not quite finished with Bayer, we are almost so. So far, it can process one section of the sky at a time. It will be not much more work to extend it to iterate over all bright stars and compute the list of all possible hash values that we need. For now, we tested it by pointing it straight at Polaris. Bayer produced a buffered hash, which we added to the random hash database that was described in Johann.

4.1 Experimental Results:

With a hash of the sky surrounding Polaris added to our test database, we expect that any generated photo of the region around Polaris, when run against Johann, should find that hash as the appropriate best match.

We experimented with several different ‘photos’ in which we passed Johann not a photo, but several slight perturbations in the Polaris data:

1. All stars centered around Polaris

2. All stars centered ½ degree away from Polaris

3. Two thirds of the stars centered ½ degree away from Polaris

4. Two thirds of the stars centered 3 degrees away from Polaris

5. Two thirds of the stars centered ¾ degree away from Polaris

6. All stars when pointing the camera exactly opposite away from Polaris

We expected that 1 would return a perfect match with the hash value generated from the same data, and it did. 2, 3, and 5 also returned very high match scores with the correct region, all above 85%. Data set 4 returned a very low scoring, random hash match. This is because it must have found a different center star than what was found using the region near Polaris, which is expected. Had we a hash value generated from that neighboring region, we expect that it would have correctly found it.

6 found a random match with a low probability score.

This testing was obviously not very thorough. Our primary work with Bayer has been to get it to the point where it can generate the entire set of hash values, and then test it using real data. There is a fair amount of work that remains to be done with Bayer before we will know conclusively whether this project was a success.

5.0 Future Work

We are clearly very close to finishing two primary goals of this research. The first was to create Johann, software to match a photo to a hash value from a database of hashes. This step has been completed and tested using test data and one section of the sky.

The second goal was to generate hash values for enough bright stars so as to cover the entire sky. We have shown that we were able to dynamically create a ‘photo’ of a sample region surrounding Polaris by pointing Bayer’s ‘camera’ in the direction of vector (0,0,1). (straight up)

By pointing Bayer’s ‘camera’ at all known bright stars that could be considered ‘brightest stars’ by Johann, we will have effectively covered the entire sky. With that set of generated hash values, all that will be left is to run the software on arbitrary photos and see whether they are correctly identified. With a final database of patterns, it will be easy to implement systematic tests in which we assess the strengths and weaknesses of this method.

We will then have software in which given a photo of many stars, it can identify the name of the brightest star occurring near the center of the photo. From there, it should not be terribly difficult to extend the software to quickly scan the photo and determine the name of every other star in it, if this functionality is desired.

For the application of satellite navigation, this last step may not be necessary. The satellite only needs to know the name of two stars in order to accurately derive its location in space. Nonetheless, there could be some advantage to knowing more information about each star in the photo that could prove useful in that or some other application.

Our work with Bayer is almost complete, but there are numerous cosmetic and minor changes that we would like to finish implementing. First, it would be ideal if the database of bitmask patterns was saved dynamically by Bayer to an XML file and then loaded dynamically by Johann from that file. Also, we began work on passing all variables used to process our data in through arguments to the software rather than hard coding them into the header files.

Finally, there are many choices of constants throughout this application that can be experimented with. For example, the choice of dividing the photo into 120 regions may have been a bit more than needed… using fewer regions would drastically speed up processing time, and may not impact accuracy. Constants determining the “center area of the photo”, “how many stars to include in the hash” and “what threshold of brightness is needed to include a star in the hash” could be varied as well. The size of the database is also a factor, as a larger database will provide more information, but at the same time increase the likelihood of identifying false positives.

6.0 Related Work

What we refer to as “Star Field Recognition” is also referred to as “Star Pattern Recognition” or “Star Identification.” The task of identifying stars from a photo has been a subject of study even before the advent of the computer. People have long been fascinated by the sky, and have looked for ways to quickly and easily identify the stars that they see in it. Astronomers such as Johann Bayer developed elaborate methods for categorizing and identifying the stars based on their magnitude, location, and even color.

With the advent of the computer, however, the task has been moved to the realm of computational solutions.

The need for a tool to perform star identification, particularly in satellite navigation and camera orienting, has led to many commercial devices. For example, the Sira-Electro Optics Company and the ASRI have both produced devices known as “Star Trackers” for this purpose (Sira-Electro Optics, ASRI). These devices are all similar in that they perform the task of matching an unknown set of data from a photo to a previously generated database. Because of the complexity of this problem, and the many ways to approach it, many algorithms exist for the actual matching capability that these devices have.

Early techniques focused on the angles and similar triangles that are present within a collection of stars. Angular separation techniques attempt to match pairs of observed stars to pairs of cataloged stars. These solutions tend to be computationally demanding, as well as subject to unusually high dependency on fine selection / rejection criteria for star pairs (DeAntonio, et al). However, this can be overcome by using highly selective processes to first narrow down the set of pairs. For example, work by D. Mortari does just that, as well as using best fit techniques in order to accommodate the difficulties of missing or slightly marred data (Mortari, 179, 189). This technique performs better than early approaches, and a formal comparison between it and our algorithm on identical test problems would be interesting. A technique known as UVASTAR also compares angles between pairs of stars. It enhances work by P. Rupert (Rupert, 1195) which narrows down the number of pairs which are selected and then matched using an enhanced non-linear least squares regression on the smaller subset of data against a catalog (Junkins, 260). Techniques such as UVASTAR are less sensitive to perturbations and poor quality in photos. However, they are subject to a fairly high computational complexity. The least-squares fit computed in this technique is particularly prone to issues such as non-convergence or poor fits. Finally, the method which narrows down the number of selected pairs using a priori knowledge is very sensitive. If the initial values are incorrectly assessed, all other benefits of the technique become immediately irrelevant, as the method requires the initial selection process to be of very high consistency between trials (Udomkesmalee, 1283).

Another early technique involved building patterns based on similar triangles (Sasaki). This technique has similar problems to angular separation techniques. However, triangle matching techniques can be improved using methods such as focusing only on a small group of stars or building tree structures that hinge on a root star. For example, one technique used to match sets of coordinates considers only sets of three points that form triangles with certain ratios of angles between the points. This way, the number of triangles obtained is limited to a small number (20, for example), reducing the number of computations needed to match the triangles to the database (Groth, 1245).

Our algorithm uses a method of similar triangles to build patterns, and uses both of these time-improving techniques (a small data set and tree structure centered around a root) towards the goal of obtaining positive identification in a reasonable time.

Another approach, referred to as a “pyramid scheme,” is to limit the set of triangles being compared to a very small number of conjoined triangles. Four stars are chosen that are considered “highly likely” to have been considered in an initially configured catalog. A pyramid is built from all of the angles between them and an associated value computed as a function of relative angles and measurements between the stars (Samaan, 8). This technique has high match rates, but can suffer if one or more of the initially chosen stars is not in the pre-configured catalog.

Methods of pattern recognition from other fields have also been applied to this problem. For example, a Bayesian pattern method was able to match test data with a success rate of 96% (Clouse). This method was similar to ours, in that it focused on a center star and its neighbors. A vector was generated based on which pixels held stars (rather than which triangles held stars, as in our method), and the vector was processed using Bayesian techniques. Like our method, it is prone to errors in pixelization of a photo, as well as requiring a fairly large field of vision (two degrees). Even neural networks and fuzzy logic have been used to identify stars (Alveda, 314). An advantage of these techniques is that they can be faster than traditional brute force techniques, as demonstrated by Chunyan, et al. (Chunyan, 1927). Overall, however, these complex learning methods tend to be unreliable due to the dependency on the learning algorithm to its data. They also require a large amount of memory in which to store the learning rules, which may not be suitable for such things as onboard satellite software (Udomkesmalee, 1283). As these methods are fairly new and continually being improved, more research is needed to assess whether these methods can overcome the barriers that they face. However, they are generally reliable, and currently implemented in commercially available devices (Sira).

One means of improving the more advanced learning methods is to convert them into stochastic models (looking at the problem over time, rather than attempting one single “yes/no” designation). By doing this, the task is made more reliable and less prone to misidentification. One such stochastic method is described by S. Udomkesmalee, in which multiple images are taken of the sky over successive known intervals (Udomkesmalee, 1286). This method gives promising results, performing well on test data even when it is high in distortions. This high tolerance to perturbation makes the method superior to those using angles or triangles, such as ours. However, it requires the camera to have the ability to cleanly maneuver a specified distance between frames in order to take a new photo in a direction with known offset. This ability may not be present in all circumstances, and the hardware to perform it may be prone to malfunctions. Finally, like our technique, it is subject to the need for a very large viewing field of up to a few degrees.

Besides the underlying need for an algorithm to convert a matrix of data points into a identifiable pattern are a number of other tasks. For example, the problem of computer vision in which a computer attempts to read an image file is at the heart of many computational problems. For those interested in the basics of computer vision, a great amount of research and work on computer vision is available at:

http://rvl4.ecn.purdue.edu/~kak/cviu.html.

The particular task of processing photos and matching them to preprocessed data is known as ‘stereo matching’ in the field of computer vision. It has been studied for several decades, with solutions utilizing techniques such as dynamic programming, feature based approaches, and optical flow (Pollefeys).

In order to extract features from a photo, our particular software makes use of the VIGRA (Vision for Generic Algorithms) c++ image parsing library, available for free and generally unrestricted use at:

http://kogs-www.informatik.uni-hamburg.de/~koethe/vigra/

License information for Vigra is posted at:

http://kogs-www.informatik.uni-hamburg.de/~koethe/vigra/LICENSE

The projection of star data from two dimensions to three is the same problem found when creating two dimensional animations, or rendering 3-D data to a computer screen. The core of this transformation is done through a rotation matrix, described at:

http://mathworld.wolfram.com/RotationMatrix.html

It also involves converting from polar to Cartesian coordinates, described at:

http://www.stargazing.net/kepler/rectang.html

Finally, techniques such as geometric hashing are similar to the pattern used in Johann. Though more generic, they are able to solve broader pattern recognition problems than the simplicity geometry found in a star field. An overview of geometric hashing is found at:

http://www.cs.princeton.edu/courses/archive/fall03/cs597D/papers/wolfson97.pdf

We initially looked at a technique such as geometric hashing as a solution for our problem. However, we decided that it was more powerful and potentially slower than would be needed when processing such a simple image format. Nonetheless, geometric hashing could help out in star field recognition, and the speed of an algorithm relying on it should be compared to the speed using the methods described in this paper.

7.0 Acknowledgements and References

The author would like to thank Jachin Rupe from Augsburg College for his help and guidance on this project. Jachin was assisted by professors Dr. Douglas Heisterkamp and Dr. Blayne E. Mayfield in choosing the project and its direction.

Special thanks to Mr. Paul Bourke for permission to convert several C classes to C++ for implementation of the Bayer software.

8.0 Bibliography

1. Alveda, P. et. al. “Neural Network Star Pattern Recognition of Spacecraft Attitude Determination and Control,” Advances in Neural Information Processing System I, Denver, Colorado, 1988, pp. 314-322.

2. Apache Software Foundation. Xerces C++ Parser

Last accessed 4 May 2004 http://xml.apache.org/xerces-c/index.html

3. ASRI. Star Tracker.

Last accessed 17 May 2004

http://www.technion.ac.il/ASRI/projects/startrk/startracker.htm

4. Astronomical Data Center

Last accessed 4 May 2004 http://adc.gsfc.nasa.gov/

5. Bourke, Paul. World to Screen Projection Transformation

Last accessed 4 May 2004 http://astronomy.swin.edu.au/~pbourke/projection/transform/

6. Burnett, Keith. Converting from Polar to Cartesian Coordinates

Last accessed 4 May 2004 http://www.stargazing.net/kepler/rectang.html

7. DeAntonio, L., et al. “Star-Tracker Based, All-Sky, Autonomous Attitude Determination,” SPIE Proceedings, Vol 1949, 1993, pp.204-215.

8. Groth, Edward J. “A Pattern-Matching Algorithm for Two-Dimensional Coordinate Lists,” The Astronomical Journal, Vol. 91. No. 5, May 1986. pp.1244-1247.

9. "Johann Bayer." Encyclopædia Britannica. 2004. Encyclopædia Britannica Premium Service.
Last accessed 4 May 2004 http://www.britannica.com/eb/article?eu=14043
10. Junkins, JL, et al. “Star Pattern Recognition for Real Time Attitude Determination,” Journal of the Astronautical Sciences, Vol. 25, No. 3, July-September 1977, pp. 251-270.

11. Kak, Avi; et. al. Computer Vision and Image Understanding

Last accessed 4 May 2004 http://rvl4.ecn.purdue.edu/~kak/cviu.html

12. Koethe, Ullrich. VIGRA – Generic Processing for Computer Vision

Last accessed 4 May 2004 http://kogs-www.informatik.uni-hamburg.de/~koethe/vigra/

13. Moore, Doug. Counting Bits

Last accessed 4 May 2004 http://www.caam.rice.edu/~dougm/twiddle/BitCount.html

14. Mortari, Daniele. “Search-Less Algorithm for Star Pattern Recognition,” The Journal of Astonautical Sciences, Vol. 45, No. 2, April-June 1997, pp.179-194.

15. Pollefeys, Marc. Stereo Matching.

Last accessed 17 May 2004

http://www.esat.kuleuven.ac.be/~pollefey/tutorial/node98.html

16. Rupert, P. “’SMART’ – A Three-axis Stabilized Attitude Reference Technique, “ J. Spacecraft and Rockets, 8, 1971, pp. 1195-1201.

17. Samaan, Malak. “Toward Faster and more Accurate Star Tracker Sensor

Using Recursive Centroiding and Star Identification, ” Dissertation to the Office of Graduate Studies of Texas A&M University. pp. 1-13.

18. Sasaki, T. et. al. “A Star Identification Method for Satellite Attitude Determination Using Star Sensors,” Proceedings of the Fifteenth International Symposium on Space Technology and Sciences, Tokyo, Japan, May 1986, pp. 1125-1130.

19. Sira-Electro Optics Corporation. Space / Star Trackers

Last accessed 17 May 2004

http://www.siraeo.co.uk/sectors.asp?s_id=5&ms_id=1

20. The Bright Star Catalogue

Last accessed 4 May 2004

http://www.alcyone.de/SIT/bsc/bsc.html

21. Udomkesmalee, Suraphol, et al. “Stochastic Star Identification,” Journal of Guidance, Control, and Dynamics, Vol 17, No. 6, November – December 1994, pp.1283-1286.

22. Weisstein, Eric. "Rotation Matrix." From MathWorld--A Wolfram Web Resource.

Last accessed 4 May 2004 http://mathworld.wolfram.com/RotationMatrix.html

23. Wolfson, Haim. Geometric Hashing: An Overview

Last accessed 4 May 2004 http://www.cs.princeton.edu/courses/archive/fall03/cs597D/papers/wolfson97.pdf

Appendix A: Source Code

Camera.cpp

#include "Camera.h"

void Camera::print()

{

}

Camera.h

#if ! defined _CAMERA_H

#define _CAMERA_H 1

#include <iostream>

#include "XYZ.h"

/* Camera definition */

class Camera{

 public:

 XYZ from;

 XYZ to;

 XYZ up;

 double angleh,anglev;

 double zoom;

 double front,back;

 short projection;

 void print();

};

#endif

HV.cpp

#include "HV.h"

void HV::print()

{

 std::cout << "HV" << std::endl;

 std::cout << "h: " << h << std::endl;

 std::cout << "v: " << v << std::endl;

 std::cout << std::endl;

}

HV.cpp

#if ! defined _HV_H

#define _HV_H 1

#include <iostream>

/* Point in screen "window" space */

class HV{

 public:

 int h,v;

 void print();

};

#endif

Bayer.cpp

#include <xercesc/parsers/SAXParser.hpp>

#include <xercesc/sax/HandlerBase.hpp>

#include <xercesc/util/XMLString.hpp>

#include <xercesc/util/PlatformUtils.hpp>

#ifdef XERCES_CPP_NAMESPACE_USE

XERCES_CPP_NAMESPACE_USE

#endif

using namespace std;

#include <iostream>

#include "StarCatalogHandler.h"

#include "Star.h"

#include "Camera.h"

#include "XYZ.h"

#include "Transform.h"

#include "Screen.h"

#include "HV.h"

#include "StarMatch.h"

int main (int argc, char * const argv[])

{

 Camera c;

Screen s;

 XYZ origin;

 origin.x = 0;

 origin.y = 0;

 origin.z = 0;

 c.from = origin;

c.to.x = -0;

c.to.y = -0;

c.to.z = -1;

 c.up.x = 0;

c.up.y = 1;

c.up.z = 0;

c.angleh = 40;

c.anglev = 40;

 c.zoom = 1;

c.front = 0;

 c.back = 100;

c.projection = PERSPECTIVE;

 s.center.h = 500;

s.center.v = 500;

s.size.h = 1000;

s.size.v = 1000;

 try

 {

 XERCES_CPP_NAMESPACE::XMLPlatformUtils::Initialize();

 }

 catch (const XMLException& toCatch)

 {

 char* message = XERCES_CPP_NAMESPACE::XMLString::transcode(toCatch.getMessage());

 std::cout << "Error during initialization! :\n"

 << message << "\n";

 XERCES_CPP_NAMESPACE::XMLString::release(&message);

 return 1;

 }

 char* xmlFile = "StarCatalog.xml";

 XERCES_CPP_NAMESPACE::SAXParser* parser = new SAXParser();

 parser->setDoValidation(false); // optional.

 parser->setDoNamespaces(false); // optional

 std::vector<Star> star_list;

 std::vector<Star>* star_list_ptr = &star_list;

 DocumentHandler* docHandler = new StarCatalogHandler(star_list_ptr, c, s);

 ErrorHandler* errHandler = (ErrorHandler*) docHandler;

 parser->setDocumentHandler(docHandler);

 parser->setErrorHandler(errHandler);

 try

 {

 parser->parse(xmlFile);

 }

 catch (const XMLException& toCatch)

 {

 char* message = XMLString::transcode(toCatch.getMessage());

 std::cout << "Exception message is: \n"

 << message << "\n";

 XMLString::release(&message);

 return -1;

 }

 catch (const SAXParseException& toCatch)

 {

 char* message = XMLString::transcode(toCatch.getMessage());

 std::cout << "Exception message is: \n"

 << message << "\n";

 XMLString::release(&message);

 return -1;

 }

 catch (...)

 {

 std::cout << "Unexpected Exception \n" ;

 return -1;

 }

 /*

 std::vector<Star>::const_iterator iterator;

 for(iterator = star_list.begin(); iterator != star_list.end(); ++iterator)

 {

 Star s = *iterator;

 s.print();

 }

 */

 StarMatch* match = new StarMatch(star_list, s.size.h, s.size.v, 0);

 int bestHashIndex = match->MatchHash();

 // StarHash * hash = new StarHash(star_list, s.size.h, s.size.v, true, true);

 // hash->OutputHash();

 delete parser;

 delete docHandler;

 return 0;

}

Screen.cpp

#include "Screen.h"

void Screen::print()

{

}

Screen.h

#if ! defined _SCREEN_H

#define _SCREEN_H 1

#include <iostream>

#include "HV.h"

/* Screen definition */

class Screen{

 public:

 HV center;

 HV size;

 void print();

};

#endif

Star.cpp

#include "Star.h"

using namespace std;

Star::Star()

{

magnitude = 0;

}

Star::Star(int i)

{

magnitude = 0;

 index = i;

}

Star::Star(int i, float m, pair<int, int> p)

{

magnitude = m;

index = i;

addPixel(m, p);

}

void Star::addPixel(float m, pair<int, int> p)

{

incrementMagnitude(m);

addPoint(m, p);

}

void Star::setMagnitude(float m)

{

magnitude = m;

}

void Star::incrementMagnitude(float m)

{

magnitude += m;

}

void Star::print()

{

cout << "index: " << index << std::endl;

vector< pair< float, pair<int, int> > >::iterator i;

for(i = points.begin(); i != points.end(); ++i)

{

 pair< float, pair<int, int> > p = *i;

 cout << p.first << "," << p.second.first << "," << p.second.second << endl;

 //pair<int, int> p = *i;

 //cout << "\t(" << p.first << ", " << p.second << ")" << endl;

}

cout << "----" << endl;

}

string Star::textFilePrint()

{

ostringstream outs;

outs << index << ",";

outs << magnitude << ",";

pair<double, double> center;

center = starCenter();

outs << center.first << ",";

outs << center.second << ",";

vector< pair< float, pair<int, int> > >::iterator i;

for(i = points.begin(); i != points.end(); ++i)

{

pair< float, pair<int, int> > p = *i;

outs << "(";

outs << p.first << "," << p.second.first << "," << p.second.second;

outs << ")";

if(i != points.end() - 1)

{

outs << ",";

}

}

outs << endl;

return outs.str();

}

void Star::addPoint(float m, pair<int, int> p)

{

points.push_back(make_pair(m, p));

}

void Star::addPoint(float m, int x, int y)

{

addPoint(m, make_pair(x, y));

}

pair<double, double> Star::starCenter()

{

vector< pair< float, pair<int, int> > >::iterator i;

double x = 0;

double y = 0;

for(i = points.begin(); i != points.end(); ++i)

{

pair< float, pair<int, int> > p = *i;

float mag = p.first;

pair<int, int> cords = p.second;

x += (cords.first * mag);

y += (cords.second * mag);

}

x = x/(double)magnitude + 0.5;

y = y/(double)magnitude + 0.5;

pair<double, double> cords = make_pair(x,y);

return cords;

}

float Star::getMagnitude()

{

return magnitude;

}

Star.h

#if ! defined _STAR_H

#define _STAR_H 1

#include <Carbon/Carbon.h>

#include <iostream>

#include <sstream>

#include <string>

#include <vector>

#include <stdlib.h>

using namespace std;

class Star

{

public:

 Star();

 Star(int i);

 Star(int i, float m, pair<int, int> p);

 void addPixel(float m, pair<int, int> p);

 void setMagnitude(float m);

 void incrementMagnitude(float m);

 void print();

 string textFilePrint();

 void addPoint(float m, pair<int, int> p);

 void addPoint(float m, int x, int y);

 pair<double, double> starCenter();

 float getMagnitude();

private:

 vector < pair <float, pair <int, int> > > points;

 float magnitude;

 int index;

};

#endif

StarCatalogHandler.cpp

#include "StarCatalogHandler.h"

StarCatalogHandler::StarCatalogHandler(std::vector<Star>* list, Camera c, Screen s)

{

 state_star = false;

 state_x = false;

 state_y = false;

 state_z = false;

 state_mag = false;

 star_list = list;

 starCount = 0;

 camera = c;

 screen = s;

 t.Trans_Initialise(camera, screen);

}

void StarCatalogHandler::startElement(const XMLCh* const n, AttributeList& attributes)

{

 char* name = XMLString::transcode(n);

 //std::cout << name << std::endl;

 if (strcmp(name, "star") == 0)

 {

 state_star = true;

 starCount++;

 point3d = XYZ();

 }

 else if (strcmp(name, "x") == 0)

 {

 state_x = true;

 }

 else if (strcmp(name, "y") == 0)

 {

 state_y = true;

 }

 else if (strcmp(name, "z") == 0)

 {

 state_z = true;

 }

 else if (strcmp(name, "magnitude") == 0)

 {

 state_mag = true;

 }

 XMLString::release(&name);

}

void StarCatalogHandler::endElement(const XMLCh* const n)

{

 char* name = XMLString::transcode(n);

 if (strcmp(name, "star") == 0)

 {

 state_star = false;

 if(t.Trans_Point(point3d, output, screen, camera))

 {

 star = Star(starCount, magnitude, pair<int, int> (output.h, output.v));

 star_list->push_back(star);

 }

 }

 else if (strcmp(name, "x") == 0)

 {

 state_x = false;

 }

 else if (strcmp(name, "y") == 0)

 {

 state_y = false;

 }

 else if (strcmp(name, "z") == 0)

 {

 state_z = false;

 }

 else if (strcmp(name, "magnitude") == 0)

 {

 state_mag = false;

 }

 XMLString::release(&name);

}

void StarCatalogHandler::fatalError(const SAXParseException& exception)

{

 char* message = XMLString::transcode(exception.getMessage());

 cout << "Fatal Error: " << message

 << " at line: " << exception.getLineNumber()

 << endl;

}

void StarCatalogHandler::characters(const XMLCh *const chars, const unsigned int length)

{

 if(state_star & state_x)

 {

 char* data = XMLString::transcode(chars);

 float value;

 stringstream strstream;

 strstream << data;

 strstream >> value;

 point3d.x = value;

 XMLString::release(&data);

 }

 if(state_star & state_y)

 {

 char* data = XMLString::transcode(chars);

 float value;

 stringstream strstream;

 strstream << data;

 strstream >> value;

 point3d.y = value;

 XMLString::release(&data);

 }

 if(state_star & state_z)

 {

 char* data = XMLString::transcode(chars);

 float value;

 stringstream strstream;

 strstream << data;

 strstream >> value;

 point3d.z = value;

 XMLString::release(&data);

 }

 if(state_star & state_mag)

 {

 char* data = XMLString::transcode(chars);

 float value;

 stringstream strstream;

 strstream << data;

 strstream >> value;

 magnitude = value;

 }

}

StarCatalogHandler.h

#if ! defined _STAR_CATALOG_HANDLER_H

#define _STAR_CATALOG_HANDLER_H 1

#include <xercesc/sax/HandlerBase.hpp>

#include <vector>

#include <sstream>

#include <iostream.h>

#include "Star.h"

#include "Camera.h"

#include "XYZ.h"

#include "Transform.h"

#include "Screen.h"

#include "HV.h"

using namespace std;

#ifdef XERCES_CPP_NAMESPACE_USE

XERCES_CPP_NAMESPACE_USE

#endif

class StarCatalogHandler : public HandlerBase

{

public:

 StarCatalogHandler(vector<Star>* list, Camera c, Screen s);

 void startElement(const XMLCh* const name, AttributeList& attributes);

 void endElement(const XMLCh* const name);

 void fatalError(const SAXParseException&);

 void characters(const XMLCh* const chars, const unsigned int length);

private:

 bool state_star;

 bool state_x;

 bool state_y;

 bool state_z;

 bool state_mag;

 vector<Star>* star_list;

 Star star;

 int starCount;

 Transform t;

 XYZ point3d;

 Camera camera;

Screen screen;

 HV output;

 XYZ origin;

 float magnitude;

};

#endif

StarHash.cpp

#include "StarHash.h";

// Created by Amos Zoellner

// 9/15/2003

// Method returns the hash value for this hash object

int* StarHash::OutputHash()

{

// find the brightest star

ComputeBrightestStar();

// create the buffered hash string

ComputeHashString();

// output the buffered hash string

DisplayHashString();

return Hash;

}
// Star Hash

// Compute the brightest star in 'stars' object and save to 'brightestStar'

void StarHash::ComputeBrightestStar()

{

numberStarsInPhoto = 0;

//int totalScore = 0;

//int brightestStarIndex = 0;

// for every star in photo

for(vector<Star>::iterator i = stars.begin(); i != stars.end(); ++i)

{

// count these while we're looping through.

numberStarsInPhoto++;

Star s = *i;

if (PointInCenterOfPhoto(s.starCenter().first, s.starCenter().second)){ // if star is in center area of photo

if (s.getMagnitude() > brightestStar.getMagnitude()){// if star is brightest one found so far

brightestStar = s; // mark it as brightest

 if(displayTests)

 {

 cout << "found a center star" << endl;

 }

}// new brightest star

}// we have a point we care about.

}// for i

}

// Display the hash string computed

void StarHash::DisplayHashString()

{

// PRINT OUTPUT

int sum = 0;

cout << "Hash of this input:\n";

for(int i = 0; i < 4; i++) // For each part of string display it

{

printBinary(Hash[i]);

sum+= countBits(Hash[i]);

cout << "("<< Hash[i] << "),";

}

cout << " (sum=" << sum <<")\n";

}

// Compute the hash string for this star map.

// If creatingBufferedHash, pad string with additional buffer bits

void StarHash::ComputeHashString()

{

for(int i = 0; i < 4; i++)

{

Hash[i] = 0;

}

double x; double y; //float xNorm; float yNorm;

// for computing hash bit indices

int hashIndex;

int location;

int hashSubIndex;

int spotForStar;

// for computing buffer bit indices

int locationBuffer;

int hashIndexBuffer;

int hashSubIndexBuffer;

int spotForStarBuffer;

// for every star in the map

for(vector<Star>::iterator i = stars.begin(); i != stars.end(); ++i)

{

Star s = *i;

x = s.starCenter().first;

y = s.starCenter().second;

x -= brightestStar.starCenter().first;

y -= brightestStar.starCenter().second;

float distance = IsInRange(x,y);

// calculate distance from center to star; returns 0 if too far away to care about.

if (distance > 0.0){ // if point is within some range of the center star

if (displayTests)

{

cout << x <<"," << y << " is in range\n";

cout << distance;

}

// Add to hash string

// compute angle between [0 1] and [x y]

double angle = acos(y/distance);

angle = angle * 360 / (2 * pi); // (convert from radians to degrees)

if ((x < 0))

angle = 360 - angle; // account for obtuse angles

if (displayTests)

{

cout << "after angle: " << angle << ",";

}
// tests

// Compute hash bit index for angle

location = (int)angle/(sizeOfRegion);

hashIndex = (int)location/sizeOfHashBitmask;

hashSubIndex = location % sizeOfHashBitmask; // location of bit in substring

spotForStar = (int)pow(2, (double)hashSubIndex);

Hash[hashIndex] = Hash[hashIndex] | spotForStar;

// If we are creating this hash and need to add the buffer:

// (we do not do this if we are matching a hash)

if (creatingBufferedHash)

{

locationBuffer = (location + 1)%numberOfRegions;

hashIndexBuffer = (int)locationBuffer/sizeOfHashBitmask;

hashSubIndexBuffer = locationBuffer % sizeOfHashBitmask;

spotForStarBuffer = (int)pow(2, (double)hashSubIndexBuffer);

Hash[hashIndex] = Hash[hashIndex] | spotForStarBuffer;

}
// creating Buffered Hash

// display data for tests if needed

if (displayTests)

{

cout << "location: " << location << ", ";

cout << "numberOfRegions: " << numberOfRegions <<" ";

cout << "hash index: " << hashIndex << ", ";

cout << "hashsubindex: " << hashSubIndex << ", ";

cout << "spot for star: " << spotForStar << ", ";

cout << "hash so far: ";

printBinary(Hash[hashIndex]);

}
// display test data

} // star was within range

else

{

if (displayTests)

{

cout << x << "," << y << "not in range\n";

}
// tests

}// star was not within range

} // for every star

}
// compute hash

// Test whether this point is within a 'fair' range of the origion... that is, whether we classify it as close enough to our

// center star as to include it in the hash algorithm.

// Returns the distance from point to origin, or 0 if too far out.

float StarHash::IsInRange(double x, double y)

{

 if(displayTests)

 {

 cout << "x: " << x << " y: " << y << endl;

 }

float distance = sqrt(x*x + y*y);

double neededRadius = sqrt((approxNumStarsToHash * pictureWidth * pictureHeight) / (pi * (double)numberStarsInPhoto));

if(displayTests){

cout << "Star range: " << x << "," << y << ",";

cout << "dist: " << distance;

cout << "needed:" << neededRadius;

}
// tests

return ((distance < neededRadius) ? distance : 0);

} // is in range

// output integer's binary representation

void StarHash::printBinary(int num){

int remainder;

if (num <= 1){

cout << num;

return;

}

remainder = num%2;

printBinary(num >> 1);

cout << remainder;

}// printBinary

// Return true if point is within center area of the picture... defined as area with fractionOfPictureForCenter * size cut off of all edges.

int StarHash::PointInCenterOfPhoto(double x, double y)

{

 if(displayTests)

 {

 cout << "PointInCenterOfPhoto() x: " << x << " y: " << y << endl;

 cout << "PointInCenterOfPhoto() " << fractionOfPictureForCenter * pictureWidth << endl;

 cout << "PointInCenterOfPhoto() " << x + fractionOfPictureForCenter * pictureWidth << endl;

 cout << "PointInCenterOfPhoto() " << fractionOfPictureForCenter * pictureHeight << endl;

 cout << "PointInCenterOfPhoto() " << y + fractionOfPictureForCenter * pictureHeight << endl;

 cout << "PointInCenterOfPhoto() " << ((x < fractionOfPictureForCenter * pictureWidth) ||

 (x + fractionOfPictureForCenter * pictureWidth > pictureWidth) ||

 (y < fractionOfPictureForCenter * pictureHeight) ||

 (y + fractionOfPictureForCenter * pictureHeight > pictureHeight)) << endl;

 }

return (!((x < fractionOfPictureForCenter * pictureWidth) || (x + fractionOfPictureForCenter * pictureWidth > pictureWidth) || (y < fractionOfPictureForCenter * pictureHeight) || (y + fractionOfPictureForCenter * pictureHeight > pictureHeight)));

} // point in center

// return number of 1's in binary number (sum of digits)

int StarHash::countBits(int num){

int count = 0;

int tmp = num;

while (tmp){

++count;

tmp &= tmp - 1;

}

return count;

} // count bits

StarHash.h

#if ! defined _STAR_HASH_H

#define _STAR_HASH_H 1

#include <vector>

#include "Star.h"

using namespace std;

// Class returns the hash of the input map.

class StarHash

{

public:

StarHash(vector<Star> s, double width, double height, bool _creatingBufferedHash, bool showTests)

{

fractionOfPictureForCenter = ((double)1)/3;

fractionOfPictureForStars = ((double)1)/2;

creatingBufferedHash = _creatingBufferedHash;

if (creatingBufferedHash){

approxNumStarsToHash = 30;

}

else{

approxNumStarsToHash = 22;

}

numberOfRegions = 120;

sizeOfRegion = 360/numberOfRegions;

sizeOfHashBitmask = 30;

displayTests = showTests;

stars = s;

pictureWidth = width;

pictureHeight = height;

brightestStar = Star(1, 0, make_pair(0,0));

numberStarsInPhoto = 0;

pi = 3.14159265358;

}

int* OutputHash();

private:

double pi;
// pi

void ComputeBrightestStar();

void DisplayHashString();

void ComputeHashString();

int numberStarsInPhoto; // number of stars in this photo.

int approxNumStarsToHash; // how many stars to attempt to include in this hash

int PointInCenterOfPhoto(double x, double y);

int countBits(int num);

bool creatingBufferedHash;
// true if we want this hash buffered

void printBinary(int);

float IsInRange(double x, double y);

double fractionOfPictureForCenter; // area in the center of the picture

double fractionOfPictureForStars; // area around center star to include stars in hash function

vector<Star> stars;
// set of stars to hash

Star brightestStar;
// brightest star found near center of photo

double pictureWidth;
// width in pixels of photo

double pictureHeight;
// height in pixels of photo

int numberOfRegions; // number of regions to divide circle into (higher = more accurate)

int sizeOfRegion; // size of a region in degrees.

int sizeOfHashBitmask; // upper limit on number of bits to store in an integer bitmask for the hash function (to keep bitmask from overflowing size of integer)

int Hash[4]; // hash bitmask of our picture

int displayTests;

};

#endif

StarMatch.cpp

#include "StarMatch.h"

int StarMatch::MatchHash()

{

StarHash* hash = new StarHash(stars, pictureWidth, pictureHeight, false, displayTests);

Hash = hash->OutputHash();

int hashMatchIndex = GetBestMatch();

return hashMatchIndex;

}
// Match Hash

// Find index of best Hash and score it.

int StarMatch::GetBestMatch(){

dataSetSize = 506;

// item [5] is Star2.gif's hash, with 23 stars.

// the 505 other rows are random bitmasks of 27-33 stars.

// todo: load this from XML

int HashTable[506][4] = {

15721216,752774671,1057751486,1036197683,

251720460,399372,102433155,7454720,

201719859,3784704,207667974,750782000,

100663320,117442158,30359424,16351232,

28311744,466385103,3145852,503513856,

208461848,427942371,993066752,805307142,

. . . records deleted . . .

205389839,246147,906413624,909508704,

855837699,533466328,1013383948,830890753

};

int maxMatch = -1; // sum of matches for best found location:

// could set higher so that only good matches are even checked.

int maxIndex = -1; // index in hash table of hash with best match

int saveBit = 0;

int sum = 0; // initialize outside of the loop once

int match = 0; // initialize outside of the loop once

int mismatch = 0; // initialize outside of the loop once

int i = 0; // initialize outside of the loop once

int k = 0; // initialize outside of the loop once

for (i = 0; i < dataSetSize; i++){ // for each hash string in the dataset

for (k = 0; k < sizeOfHashBitmask*4; k++){ // k circular shifts

// Now compute the sum of this 'match'

sum = 0;

match = HashTable[i][0] & Hash[0];

mismatch = ~HashTable[i][0] & Hash[0];

sum += (SSwt * countBits(match));

sum -= (NSwt * countBits(mismatch));

match = HashTable[i][1] & Hash[1];

mismatch = ~HashTable[i][1] & Hash[1];

sum += (SSwt * countBits(match));

sum -= (NSwt * countBits(mismatch));

match = HashTable[i][2] & Hash[2];

mismatch = ~HashTable[i][2] & Hash[2];

sum += (SSwt * countBits(match));

sum -= (NSwt * countBits(mismatch));

match = HashTable[i][3] & Hash[3];

mismatch = ~HashTable[i][3] & Hash[3];

sum += (SSwt * countBits(match));

sum -= (NSwt * countBits(mismatch));

// if was best sum yet, save it

if (sum > maxMatch){

if(displayTests){

cout << "\n possible best solution: index: "<< i << " sum: "<< sum << "\n";

for (int j = 0; j < 4; j++){ // for the 4 parts of hash bitmask

printBinary(HashTable[i][j]);

cout << " ";

}

cout <<"\n";

for (int j = 0; j < 4; j++){ // for the 4 parts of hash bitmask

printBinary(Hash[j]);

cout << " ";

}

}
// tests

maxMatch = sum;

maxIndex = i;

}// best sum

if (displayTests){

// DISPLAY HASHES

cout << "Sum of Hash " << i << " is " << sum << "\n";

for (int j = 0; j < 4; j++){ // for the 4 parts of hash bitmask

cout << "HashTable: ";

printBinary(HashTable[i][j]);

cout << "hash: ";

printBinary(Hash[j]);

}
// for each part of mask

} // display tests

// Shift hashed value 1 space to right and try again

saveBit = Hash[0] & 1;

Hash[0] = (Hash[0] >> 1) | ((Hash[3] & 1) ? leftmostbit : 0);

Hash[3] = (Hash[3] >> 1) | ((Hash[2] & 1) ? leftmostbit : 0);

Hash[2] = (Hash[2] >> 1) | ((Hash[1] & 1) ? leftmostbit : 0);

Hash[1] = (Hash[1] >> 1) | ((saveBit) ? leftmostbit : 0);

} // k shifts

}
// for each hash string

cout << "\n Best Hash: " << maxIndex;

cout << "\n Match Score: " << maxMatch << "\n";

return maxIndex;

}
// get Match

// output integer's binary representation

void StarMatch::printBinary(int num){

int remainder;

if (num <= 1){

cout << num;

return;

}

remainder = num%2;

printBinary(num >> 1);

cout << remainder;

}// printBinary

// return the number of 1's in binary number (sum of digits)

int StarMatch::countBits(int num){

int count = 0;

int tmp = num;

while (tmp){

++count;

tmp &= tmp - 1;

}

return count;

} // count bits

StarMatch.h

#if ! defined _STAR_MATCH_H

#define _STAR_MATCH_H 1

#include <math.h>

#include <vector>

#include "Star.h"

#include "StarHash.h"

using namespace std;

// Class computes hash of input map and returns best match from database.

class StarMatch

{

public:

StarMatch(vector<Star> s, double width, double height, int showTests)

{

numberOfRegions = 120;

sizeOfHashBitmask = 30;

SSwt = 1;

NSwt = 1;

displayTests = showTests;

stars = s;

pictureWidth = width;

pictureHeight = height;

SSwt = 1;

NSwt = 1;

leftmostbit = (int)pow(2, (double)sizeOfHashBitmask-1);

}

int MatchHash();

private:

vector<Star> stars;
// set of stars to match to hash

void printBinary(int);

int leftmostbit;

int GetBestMatch();

double pictureWidth;
// width in pixels of picture

double pictureHeight;
// height in pixels of picture

int numberOfRegions;
// number of pie-shaped regions to divide picture into

int countBits(int num);

int sizeOfHashBitmask; // upper limit on number of bits to store in an integer bitmask for the hash function (to keep bitmask from overflowing size of integer)

int displayTests;
// nonzero: display tests

int dataSetSize; // length of HashTable; (number of hash strings in dataset)

int SSwt; // score gain for match between star in HashTable dbase and photo

int NSwt; // score loss for star not in HashTable, but found in photo

int* Hash; // hash bitmask of our picture

};

#endif

Transform.cpp

#include "Transform.h"

int Transform::Trans_Initialise(Camera camera, Screen screen)

{

 XYZ origin = {0.0,0.0,0.0};

 /* Is the camera position and view vector coincident ? */

 if (EqualVertex(camera.to,camera.from)) {

 return(false);

 }

 /* Is there a legal camera up vector ? */

 if (EqualVertex(camera.up,origin)) {

 return(false);

 }

 basisb.x = camera.to.x - camera.from.x;

 basisb.y = camera.to.y - camera.from.y;

 basisb.z = camera.to.z - camera.from.z;

 Normalise(&basisb);

 CrossProduct(camera.up,basisb,&basisa);

 Normalise(&basisa);

 /* Are the up vector and view direction colinear */

 if (EqualVertex(basisa,origin)) {

 return(false);

 }

 CrossProduct(basisb,basisa,&basisc);

 /* Do we have legal camera apertures ? */

 if (camera.angleh < EPSILON || camera.anglev < EPSILON) {

 return(false);

 }

 /* Calculate camera aperture statics, note: angles in degrees */

 tanthetah = tan(camera.angleh * DTOR / 2);

 tanthetav = tan(camera.anglev * DTOR / 2);

 /* Do we have a legal camera zoom ? */

 if (camera.zoom < EPSILON) {

 return(false);

 }

 /* Are the clipping planes legal ? */

 if (camera.front < 0 || camera.back < 0 || camera.back <= camera.front) {

 return(false);

 }

 return(true);

}

/*

 Take a point in world coordinates and transform it to

 a point in the eye coordinate system.

*/

XYZ Transform::Trans_World2Eye(XYZ w, XYZ e, Camera camera)

{

 /* Translate world so that the camera is at the origin */

 w.x -= camera.from.x;

 w.y -= camera.from.y;

 w.z -= camera.from.z;

 /* Convert to eye coordinates using basis vectors */

 e.x = w.x * basisa.x + w.y * basisa.y + w.z * basisa.z;

 e.y = w.x * basisb.x + w.y * basisb.y + w.z * basisb.z;

 e.z = w.x * basisc.x + w.y * basisc.y + w.z * basisc.z;

 return e;

}

/*

 Take a vector in eye ooordinates and transform it into

 normalised coordinates for a perspective view. No normalisation

 is performed for an orthorgraphic projection. Note that although

 the y component of the normalised vector is copied from the eye

 coordinate system, it is generally no longer needed. It can

 however still be used exterally for vector sorting.

*/

XYZ Transform::Trans_Eye2Norm(XYZ e, XYZ n, Camera camera)

{

 double d;

 if (camera.projection == PERSPECTIVE)

 {

 d = camera.zoom / e.y;

 n.x = d * e.x / tanthetah;

 n.y = e.y;;

 n.z = d * e.z / tanthetav;

 }

 else

 {

 n.x = camera.zoom * e.x / tanthetah;

 n.y = e.y;

 n.z = camera.zoom * e.z / tanthetav;

 }

 return n;

}

/*

 Take a vector in normalised ooordinates and transform it into

 screen coordinates.

*/

HV Transform::Trans_Norm2Screen(XYZ norm, HV projected, Screen screen)

{

 //norm.print();

 projected.h = screen.center.h - (int)((double)screen.size.h * ((double)norm.x / (double)2));

 projected.v = screen.center.v - (int)((double)screen.size.v * ((double)norm.z / (double)2));

 /*

 std::cout << norm.x << ", " << screen.size.h << ", ";

 std::cout << (screen.size.v * ((double)norm.x / (double)2)) << "\n";

 projected.print();

 */

 return projected;

}

/*

 Transform a point from world to screen coordinates. Return true

 if the point is visible, the point in screen coordinates is p.

 Assumes Trans_Initialise() has been called

*/

int Transform::Trans_Point(XYZ w, HV& p, Screen screen, Camera camera)

{

 XYZ e,n;

 e = Trans_World2Eye(w, e, camera);

 //e.print();

 if (e.y >= camera.front && e.y <= camera.back)

 {

 n = Trans_Eye2Norm(e, n, camera);

 //n.print();

 //p.print();

 if (n.x >= -1 && n.x <= 1 && n.z >= -1 && n.z <= 1)

 {

 p = Trans_Norm2Screen(n, p, screen);

 //p.print();

 return(true);

 }

 }

 return(false);

}

/*

 Normalise a vector

*/

void Transform::Normalise(XYZ* v)

{

 double length;

 length = sqrt(v->x * v->x + v->y * v->y + v->z * v->z);

 v->x /= length;

 v->y /= length;

 v->z /= length;

}

/*

 Cross product of two vectors, p3 = p1 x p2

*/

void Transform::CrossProduct(XYZ p1, XYZ p2, XYZ* p3)

{

 p3->x = p1.y * p2.z - p1.z * p2.y;

 p3->y = p1.z * p2.x - p1.x * p2.z;

 p3->z = p1.x * p2.y - p1.y * p2.x;

}

/*

 Test for coincidence of two vectors, true if ooincident

*/

int Transform::EqualVertex(XYZ p1, XYZ p2)

{

 if (ABS(p1.x - p2.x) > EPSILON)

 return(false);

 if (ABS(p1.y - p2.y) > EPSILON)

 return(false);

 if (ABS(p1.z - p2.z) > EPSILON)

 return(false);

 return(true);

}

void Transform::print()

{

 std::cout << "Transform Object" << std::endl;

 std::cout << tanthetah << " " << tanthetav << std::endl;

 basisa.print();

 basisb.print();

 basisc.print();

 std::cout << std::endl;

}

Transform.h

#if ! defined _TRANSFORM_H

#define _TRANSFORM_H 1

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <iostream>

#include "Camera.h"

#include "Screen.h"

#define DTOR 0.01745329252

#define EPSILON 0.001

#define PERSPECTIVE 0

#define ORTHOGRAPHIC 1

#define ABS(x) ((x) < 0 ? -(x) : (x))

using namespace std;

class Transform

{

 private:

 double tanthetah,tanthetav;

 XYZ basisa, basisb, basisc;

 public:

 int Trans_Initialise(Camera camera, Screen screen);

 XYZ Trans_World2Eye(XYZ w, XYZ e, Camera camera);

 XYZ Trans_Eye2Norm(XYZ e, XYZ n, Camera camera);

 HV Trans_Norm2Screen(XYZ, HV, Screen);

 int Trans_Point(XYZ, HV&, Screen, Camera);

 void Normalise(XYZ*);

 void CrossProduct(XYZ, XYZ, XYZ*);

 int EqualVertex(XYZ, XYZ);

 void print();

};

#endif

XYZ.cpp

#include "XYZ.h"

void XYZ::print()

{

 std::cout << "XYZ" << std::endl;

 std::cout << "x: " << x << std::endl;

 std::cout << "y: " << y << std::endl;

 std::cout << "z: " << z << std::endl;

 std::cout << std::endl;

}

XYZ.h

#if ! defined _XYZ_H

#define _XYZ_H 1

#include <iostream>

/* Point in 3 space */

class XYZ{

 public:

 double x,y,z;

 void print();

};

#endif

Johann.cpp

///////////////////////////

/*

by: Jachin Rupe

date: 7-11-03

name:

StarCounter

version:
1.0

notes:

for more info take a look at the Readme file.

​

*/

///////////////////////////

#include <iostream>

#include <fstream>

#include <string>

#include <map>

#include "vigra/stdimage.hxx"

#include "vigra/impex.hxx"

#include "vigra/transformimage.hxx"

#include "vigra/labelimage.hxx"

#include "include.h"

#include "argtable.c"

using namespace std;

using namespace vigra;

int main(int argc, char **argv)

{

static char
inputFileName[50];

static char
outputFileName[50];

static int
threshold;

static int showTests;

arg_rec argtable[] =

{

{

"-t ",

"<threshold>",

arg_int,

&threshold,

"128",

"\t integer used for finding the stars (0-255)"

},

{

"-tests ",

"<show tests>",

arg_int,

&showTests,

"0",

"\t 0 to hide tests, other to show tests"

},

{

NULL,

"<input file name>",

arg_str,

inputFileName,

NULL,

"\t path to an image file"

},

{

"-o ",

"<output file name>",

arg_str,

outputFileName,

"output.txt",

"\t output file"

}

};

const size_t narg = sizeof(argtable)/sizeof(arg_rec);

if (argc == 1)

{

printf("Usage: %s %s\n", argv[0], arg_syntax(argtable, narg));

printf("%s\n", arg_glossary(argtable, narg, " "));

return 0;

}

else

{

char cmdline[200], errmsg[200], errmark[200];

if (!arg_scanargv(argc, argv, argtable, narg, cmdline, errmsg, errmark))

{

printf("ERROR: %s\n",

cmdline);

printf(" %s %s\n",
errmark, errmsg);

return 1;

}

}

string inputfile = string(inputFileName);

string outputFile = string(outputFileName);

vigra::BImage greyScaleImage;

vigra::ImageImportInfo info(inputFileName);

try

{

greyScaleImage = vigra::BImage(info.width(), info.height());

if(info.isColor())

{

vigra::BRGBImage colorImage(info.width(), info.height());

importImage(info, destImage(colorImage));

vigra::BRGBImage::Iterator sourceIterator = colorImage.upperLeft();

vigra::BRGBImage::Iterator sourceLast = colorImage.lowerRight();

vigra::BImage::Iterator destinationIterator = greyScaleImage.upperLeft();

vigra::RGBToGrayAccessor<RGBValue<unsigned char> > RGBToGrey;

for(; sourceIterator.y != sourceLast.y; ++sourceIterator.y, ++destinationIterator.y)

{

for(; sourceIterator.x != sourceLast.x; ++sourceIterator.x, ++destinationIterator.x)

{

*destinationIterator = RGBToGrey(sourceIterator);

}

sourceIterator.x -= colorImage.width();

destinationIterator.x -= greyScaleImage.width();

}

}

else // info.isGrayscale()

{

importImage(info, destImage(greyScaleImage));

}

}

catch (vigra::StdException & e)

{

// catch any errors that might have occured and print their reason

std::cout << e.what() << std::endl;

return 1;

}

BImage duoToneImage(greyScaleImage.width(), greyScaleImage.height());

transformImage(
greyScaleImage.upperLeft(),

greyScaleImage.lowerRight(),

greyScaleImage.accessor(),

duoToneImage.upperLeft(),

duoToneImage.accessor(),

Threshold <
BImage::PixelType,

BImage::PixelType> (threshold, 255, 0, 255));

/*

try

{

exportImage(srcImageRange(duoToneImage), "out.jpg");

}

catch (vigra::StdException & e)

{

std::cout << e.what() << std::endl;

return 1;

}

*/

vigra::IImage labels(greyScaleImage.width(), greyScaleImage.height());

vigra::labelImageWithBackground(srcImageRange(duoToneImage), destImage(labels), false, 0);

////////////////////////////////////

// print the labeld stars to the consol

/*

vigra::IImage::Iterator iterator
= labels.upperLeft();

vigra::IImage::Iterator last

= labels.lowerRight();

for(; iterator.y != last.y; ++iterator.y)

{

for(; iterator.x != last.x; ++iterator.x)

{

std::cout << *iterator;

}

iterator.x -= labels.width();

std::cout << std::endl;

}

*/

////////////////////////////////////

vigra::IImage::Iterator iIterator
= labels.upperLeft();

vigra::IImage::Iterator iLast

= labels.lowerRight();

vigra::BImage::Iterator grayIterator = greyScaleImage.upperLeft();

map<int, Star> stars;

for(int y = 0; iIterator.y != iLast.y; ++y, ++iIterator.y, ++grayIterator.y)

{

for(int x = 0; iIterator.x != iLast.x; ++x, ++iIterator.x, ++grayIterator.x)

{

if(*iIterator > 0)

{

if(stars.empty())

{

stars[*iIterator] = Star(*iIterator, *grayIterator, make_pair(x,y));

}

else

{

map<int, Star>::iterator s = stars.find(*iIterator);

if(s == stars.end())

{

stars[*iIterator] = Star(*iIterator, *grayIterator, make_pair(x,y));

}

else

{

stars[*iIterator].addPixel(*grayIterator, make_pair(x,y));

}

}

}

}

iIterator.x
-= labels.width();

grayIterator.x
-= greyScaleImage.width();

}

////////////////////////////////////

// print the stars to the consol

/*

for(map<int, Star>::iterator i = stars.begin(); i != stars.end(); ++i)

{

pair<int, Star> p = *i;

Star s = p.second;

s.print();

}

*/

////////////////////////////////////

////////////////////////////////////

// print the stars to the output file

ofstream outputFileStream;

outputFileStream.open(outputFileName);

if(outputFileStream.good())

{

for(map<int, Star>::iterator i = stars.begin(); i != stars.end(); ++i)

{

pair<int, Star> p = *i;

Star s = p.second;

outputFileStream << s.textFilePrint();

}

outputFileStream.close();

}

////////////////////////////////////

// find hash match

StarMatch* match = new StarMatch(stars, info.width(), info.height(), showTests);

int bestHashIndex = match->MatchHash();

return 0;

}

Appendix B:

Data loss due to pixelization of a photo.
If the actual star is at point S1 = (0,y), the angle A1 between S1 and the Base (located at (0, 1)) is by inspection 0 radians.

Now, if our estimate of the location star is a little off, and the pixel gets shifted by z units to the left (this is the worst case scenario), the star is seen at the point S2 = (0 + z, y). S2 normalized is S2n = S2/|S2| = y/sqrt(z2 + y2). The angle A2 between S2 and the Base is found by cos-1(A1n .* Base) = cos-1(0 + y/sqrt(z2 + y2)).

The difference between A1​ and A2 is D = |A1 – A2​|. By substitution, D = |A2​|. A2 is always greater than 0, so D = A2.

For the purpose of this project, we would like the difference between angles to be within a certain threshold n, so that between any computation of angles in different photos of the same location will be sufficiently similar. We choose n = 1.5 degrees, or .02618 radians.

Thus, cos-1(y/sqrt(z2 + y2)) <= .02618 .

We estimate, by looking at a couple samples of images of stars, that the worst estimate for the exact center of a star is very likely within one pixel of the actual location of the star.

For example, here is one of the larger stars in a sample photo:

[image: image6.png]

As you can see, there are only about three likely candidate pixels (A,B,C) for the center of the star, all of which are within one unit of the actual center, the red dot.

Thus, we estimate z = 1 as an upper bound, and so

cos-1(y/sqrt(12 + y2)) <= .02618, or

y/sqrt(y2 + 1) >= 0.99966 .

By substitution, this holds for y >= 40, and so we will not to attempt to compute angles on vectors with a length < 40 pixels. All other angles we can assume to be accurate estimates to within 1.5 degrees of the true angle, and if our image is 800px by 800px, most of the stars will be farther than 40 pixels away from the center. This is because:

Area of the map = 800 * 800 = 160,000 pixels.

Area within 40 pixels of the center = pi*r2 = 3.145 * 402 = 5026.4 pixels.

160,000 / 5026.4 = 0.00785 .

Thus, only .785 % of the image falls within 40 pixels of the center, a relatively small portion, and we do not lose much data due to not including these stars.

7

_1130712038.psd

