Amos Zoellner

ID   2328232   zoel0009

Csci5481 Programming Assignment #2

Write-Up

Summary
The purpose of this project was to predict protein secondary structures for an unclassified set of proteins, based on data from a classified training set.  I chose to implement all three suggested algorithms given in the assignment description.  The first method implements a Hidden Markov Model with 78 states.  The second method implements a method that compares new data against known data to compute most likely classifications.  The third method uses a first-order markov chain to classify the secondary structures, with each structure represented by its own model.  The algorithms will be explained and their runtimes and accuracy compared.

1.  HMM-Based Scheme

Model:


The HMM consists of 3 states for each amino acid.  To simplify things, I assumed that there are 26 amino acids, so that we have a simple one-to-one mapping from each amino acid to a letter of the alphabet.  Each amino acid has 3 states, which correspond to whether the amino acid is contained within either an alpha helix, a beta strand, or a coil region (the possible secondary structures).  This results in a total of 26*3 = 78 states.


Every state has a transition entering it from every other state, including itself.  The value of the transition from state x to state y is given as the probability that given state x, state y will be the next consecutive state.. namely, the probability that y’s amino acid and structure will be next in the chain.


Each state also has an emission probability for each possible amino acid.  Given the implementation, this certainly could have the value ‘1’ for the amino acid corresponding to the state, and the value ‘0’ for every other amino acid.  However, I wanted the code to be flexible so that other types of HMM models could easily be created from the same code.

(For example, I also ran this code as a 3 state HMM, where each state could emit the 26 amino acids with varying frequency.  It had very poor classification accuracy, at around 38%.)

Thus, I initialized every emission probability to a very tiny non-zero value as would be expected in a model in which any emission were possible.  After the model is learned, the emissions that should be 1.0 end up with values of around .95, which reduces the accuracy of this model, but results in a better base for future HMM models, where we expect no non-zero emission probabilities (and we don’t want to cause scenarios not found in the training data to be impossible).



With this model, we can use the viterbi algorithm to solve for a sequence of amino acids and find the most likely path through the HMM, giving a corresponding output sequence of predicted secondary structure.  Note that the extra amino acids (Q, Z, etc) not found in the training data will not be found in the test data and are thus ignored.

Learning Algorithm:


The learning program takes as input a training data set and outputs the model: 

java learn1 train1.data > model1.train1    (or execute file ‘run1l’)

To learn this model, I simply iterated through the training set, adding 1 to TRANSITIONS[x,y] every time state y occurred following state x.  Then, I normalize the transitions matrix so that the sum of the rows add up to 1… meaning that given state x, the sum of all possible transitions x->y (for all y) is one. This results in the correct probability assignment for each transition.  I also incremented the emission for the structure found at this point by 1.  After all emissions were added, the emission matrix was normalized so that the sum of all emission probabilities is 1.

That clearly has a runtime complexity of O(n * L), where n is the number of proteins and L is the length of the file.

Model Storage:


Execution of the learn1 program outputs a model which can be saved for later classification.  This file saves the model by saving the following items in a set order in the file: (each is also prefixed by a textual description)

number of states

states per class (how many states correspond to each secondary structure possibility)

size of alphabet (# of amino acids)

transitions (a space-delimited matrix of probabilities directly mapping to the transition matrix)

emissions (a space-delimited matrix of probabilities directly mapping to the emission matrix)

This code is found in Helper.java.

Classification:


The classification program takes as input the test data, the HMM model file, the name of the classification-results file, and outputs the classification accuracy:

java classify1 test2.data model1.train2 results1.test2 > performance1.test2   (or execute file ‘run1c’)

To classify a new protein, the executable classify1 parses through the set of proteins to classify.  For each one, a viterbi algorithm is run on the HMM found in the model file passed as input, and the most likely path through the HMM is found.  This path is then stepped through to compute which secondary structure each state corresponded to, and they are printed to the output file as specified in the assignment.  The classification accuracy is computed and printed to standard output.

Computational Complexity:


For each protein we are classifying, we run the viterbi algorithm on it.  The viterbi algorithm runs a recurrence relation that builds a dynamic-programming-like table of size n by m where S is the number of states and L is the length of the amino acid.  Thus, the viterbi algorithm runs in time O(S * L).  For n proteins, this has a total run-time of O(S * n * L).  Since there is significantly more overhead in this method than method 3 (the Markov Model), even though it theoretically has a run time of 78 times that of method 3, it seems reasonable that in my test cases, it actually took an average of roughly 92 times as long as method 3 to execute.

Results:


I executed the learn1 program on sets 1 and 2 of training data.  The models created are stored in the files model1.train1 and model1.train2.  This took about 2.5 seconds for each.


I executed the classify1 on set 1 and 2 of test data, using model1.train1 and model1.train2 accordingly.  Set 1 took 5.33 minutes to classify, and had the following performance:

Classification accuracy of structure H: 0.38390675

Classification accuracy of structure B: 0.1288

Classification accuracy of structure C: 0.70737827

Performance Measure A: 0.48177084

Set 2 was similar, with an overall performance measure of 47.6%, taking 3.53 minutes to classify.

The average overall classification performance A for this model is thus 47.9%.

2. Alignment-Based Method

Model:


This method utilizes a very simple brute force approach to find most likely structures for each amino acid in the test data based on similar sequences found in training data.  It works as follows: 


Consider an amino acid A at position i of a protein.  A window of size ‘windowSize’ (chosen as 5 in this implementation, to include a good number of surrounding characters, but not so many that the runtime is unmanageable) is created, centered at i.  This results in an amino acid sequence of length 5, whose 3rd item is A.  This query string is called ‘segment’.  This segment is queried against every possible segment in the training data.  Each query computes the gapless score between the two inputs and saves it in a matrix.  The score is computed using the BLOSUM 62 matrix given in programming assignment #1.  This matrix is loaded into memory using the code I created in Assignment #1, found in SeqAlignment.java.  


After all possible scores have been computed, the top 50 scores are found from the matrix by iterating through it 50 times and pulling out the highest value.  A future improvement would be to iterate through only once and sort the values, reducing the runtime.  I suspect that this step contributes to the large runtime of this method.


Each of the 50 highest scoring segments has a structure that occurred with it in the training data.  The probability of each structure is computed and the one that occurred the most times out of the 50 is chosen.


The structure that had the highest probability is chosen as the consensus structure and concatenated to the concensus structure string, which is eventually output to the results file.


The classification accuracy is then computed and printed to standard output.

Learning Algorithm:

No learning algorithm is implemented.

Computational Complexity:


For each amino acid, we must align a segment containing it against every amino acid in the training sequence. 


Thus, for n proteins in the training set, with average length L and proteins in the test set with average length L, the run time to compute all of the similarity scores is O(n * m * L2).


The search for the best 50 similarities takes time O(50 * m * L2), which is done for all n * L amino acids in the test data, leading to an overall time of O(50 * n * m * L2).  Implementing a better search algorithm such as merge sort would reduce this to a well bounded O(n * m * L2) time, though still rather slow.

Model Storage:


This model is not stored, and there is no learning phase associated with it.

Classification: 


The classification program takes as input the training set, the test set, the name of the results file that will be generated, the BLOSUM scoring matrix, and outputs the classification accuracy to standard output:

java classify2 train1.data test4.data results2.test4 BLOSUM62 > performance2.test4  (or execute file run2c)
Results:


  I executed the program on only two lines of test1.data, as it takes a very long time to compute.  Line 1 (test3.data) results were stored in results2.test3.  It ran in 6.05 minutes, and had a classification accuracy of 53.3%.

Classification accuracy of structure H: 0.6315789

Classification accuracy of structure B: 0.25925925

Classification accuracy of structure C: 0.6962025

Performance Measure A: 0.53289473
Line 2 (test4.data) results were stored in results2.test4.  It ran in 12.5 minutes, with a classification accuracy of 55.1%.

Classification accuracy of structure H: 0.52845526

Classification accuracy of structure B: 0.33333334

Classification accuracy of structure C: 0.65

Performance Measure A: 0.5509554

The average overall classification performance A for this model is thus 54.2%.

3. Markov-Chain-Based Scheme

Model:


The Markov-Chain scheme consists of 3 first-order markov models.  Each model consists of one state per amino acid.  Each state has a transition to every other state including itself.  These transitions are stored in the MODELS matrix, where MODELS[x,y,z] is the probability that state z will follow state y given model x occurring at z’s position.  There are thus 3 models, one for each possible secondary structure, H, B, and C.  For each, we can compute the likelihood that any character is preceded by another character, and from that, choose the most likely models over sliding windows of first-order transitions in the test data.

Learning Algorithm:


To build this model, I simply iterate through the training data.  The values of MODELS are initialized to 1, so that no transition is ‘impossible’.  Then each time an amino acid z follows an amino acid y in the training data, and x is the secondary structure at the position of z, MODELS[x,y,z] is incremented by 1.  Afterwards, the matrix is normalized so that the sum of all probabilities from a given x to all other y adds up to 1.  That clearly has a runtime complexity of O(n * L), where n is the number of proteins and L is the length of the file. 


The learning program learn3 takes as input a training data set and outputs the model: 

java learn3 train1.data > model3.train1 (or execute file ‘run3l’)
Model Storage:

Execution of the learn3 program results in a model which can be saved for later classification.  This file saves the model by saving the following items in a set order in the file: (each is also prefixed by a textual description)

number of models

size of alphabet (# of amino acids)

a space-delimited matrix of values directly corresponding to the MODELS matrix that was learned.

Classification:


The classification program classify3 takes as input the test data, the Models file, the name of the classification-results file, and prints the classification accuracy to standard output:

java classify3 test1.data model3.train1 results3.test1 > performance3.test1    (or execute file ‘run3c’)

To classify a new protein, the executable classify3 parses through the set of proteins.  Instead of running a simple test on each amino acid and its previous one for each model, I added sliding windows to get a consensus result for each index to improve the accuracy.

For each amino acid in the test data, the classification algorithm creates a window of size ‘windowSize’ (4) and computes the likelihood of all 4 first-order transitions within this window, for each model.  The model with the highest overall value is chosen as the consensus model for that window.   Since windowSize is 4, each amino acid in the test data will have 4 windows covering it.  To choose an appropriate model, we choose the one that was chosen the most times out of the 4 windows that contained that amino acid.  That model’s corresponding secondary structure is output as the chosen classification and output to the output file as specified in the assignment.

The classification accuracy is computed and printed to standard output.

Computational Complexity:

For each protein sequence we are classifying, we iterate through each amino acid.  For each amino acid, we compute 4 windows, and for each window we iterate through the models and compute the markov transition probability of the four-amino-acid long sequence.  We have to repeat this step sequence over all windows, models, and indices, to compute the probability of each structure given the index.  This has the same complexity.

So, for n proteins in the training set, with average length L, the run time is O(n * L * windowSize * numberModels  + n * L * windowSize * numberModels) = O(n * L).

Results:

I executed the learn3 program on sets 1 and 2 of training data.  The models created are stored in the files model3.train1 and model3.train2.  This took about 2 seconds for each.


I executed the classify3 on set 1 and 2 of test data, using model3.train1 and model3.train2 accordingly.  Set 1 took 3.0 seconds to classify, and had the following performance:

Classification accuracy of structure H: 0.54427177

Classification accuracy of structure B: 0.47984

Classification accuracy of structure C: 0.59395766

Performance Measure A: 0.554441

Set 2 took 2.5 seconds to classify, and had the following performance:

Classification accuracy of structure H: 0.5600154

Classification accuracy of structure B: 0.4688792

Classification accuracy of structure C: 0.613679

Performance Measure A: 0.56606424
The average overall classification performance A for this model is thus 56.0%.

Conclusions
All three methods had an average classification accuracy of between approximately 50-55%.  Surprisingly, the first-order markov chain (3) had the same accuracy as the sequence similarity method (2), though it ran in a scant fraction of the time.  This is likely due to the sliding windows, which effectively covered approximately the same amount of information as the windows implemented in the similarity look-up method (2).  It certainly could be improved by increasing the order of the markov model, as well as accounting for prior probabilities.  (To simplify the situation, I have been assuming equal background probabilities of all three classes, which is not the case in the training data.)  Both of these outperformed the Hidden Markov Model (1) classification accuracy by a noticeable amount.  This makes sense, as the hidden markov model is “first order”, only looking at transition probabilities from one state to the next, over the protein sequence.

